In: Math
Let X and Y have the following joint distribution:
X/Y | 0 | 1 | 2 |
0 | 5/50 | 8/50 | 1/50 |
2 | 10/50 | 1/50 | 5/50 |
4 | 10/50 | 10/50 | 0 |
Further, suppose σx = √(1664/625), σy = √(3111/2500)
a) Find Cov(X,Y)
b) Find p(X,Y)
c) Find Cov(1-X, 10+Y)
d) p(1-X, 10+Y), Hint: use c and find Var[1-X], Var[10+Y]
for above
y | ||||
x | 0 | 1 | 2 | Total |
0 | 1/10 | 4/25 | 1/50 | 0.2800 |
2 | 1/5 | 1/50 | 1/10 | 0.3200 |
4 | 1/5 | 1/5 | 0 | 0.4000 |
Total | 0.5000 | 0.3800 | 0.1200 | 1.0000 |
a)
marginal distribution of X:
x | P(x) | xP(x) | x^2P(x) |
0 | 7/25 | 0.0000 | 0.0000 |
2 | 8/25 | 0.6400 | 1.2800 |
4 | 2/5 | 1.6000 | 6.4000 |
total | 1 | 2.24 | 7.68 |
E(x) | = | 2.24 | |
E(x^2) | = | 7.68 | |
Var(x) | E(x^2)-(E(x))^2 | 2.6624 |
marginal distribution of Y:
y | P(y) | yP(y) | y^2P(y) |
0 | 1/2 | 0.0000 | 0.0000 |
1 | 19/50 | 0.3800 | 0.3800 |
2 | 3/25 | 0.2400 | 0.4800 |
total | 1.0000 | 0.6200 | 0.8600 |
E(y) | = | 0.6200 | |
E(y^2) | = | 0.8600 | |
Var(y) | E(y^2)-(E(y))^2 | 0.4756 |
E(XY)=xyP(x,y)=1.24
a)
Cov(X,Y) =E(XY)-E(X)*E(Y)=-0.1488
b)
p(X,Y) =Cov(X,Y)/( σx * σy)=-0.13223
c)
as Cov(aX+b,cY+d)=ac*Cov(X,Y)
hence Cov(1-X, 10+Y) =-1*1*Cov*X,Y)=0.1488
d)
p(1-X, 10+Y) = Cov(1-X, 10+Y) /( σx * σy)=0.13223