Question

In: Math

To test H0: mu=60 versus H1: mu<60, a random sample size n=25 is obtained from a...

To test H0: mu=60 versus H1: mu<60, a random sample size n=25 is obtained from a population that is known to be normally distributed. Complete parts a through d below. a) if x bar= 57.4 and s= 14.1, compute the test statistic. b)If the researcher decides to test this hypothesis at the confidence variable= .1 level of significance, determine the critical value(s). c)draw the t-distribution that depicts the critical region. d)will the researcher reject the null hypothesis?

Solutions

Expert Solution

Solution :

a ) Given that,

= 60

=  57.4

s = 14.1

n = 25

This is the left tailed test .

The null and alternative hypothesis is ,

H0 :   = 60

Ha : < 60

Test statistic = t

= ( - ) / s / n

= ( 57.4 - 60 ) / 14.1 / 25

= - 0.922

Test statistic = t = - 0.922

P-value = 0.1829

b ) = 0.1  

P-value ≥

0.1829 ≥ 0.1

c ) The significance level is α=0.1, and the critical value for a left-tailed test is tc ​=−1.318

d ) Not Reject the null hypothesis .

There is insufficient evidence to suggest that,


Related Solutions

o test H0:σ=1.2 versus H1: σ≠1.2, a random sample of size n=22 is obtained from a...
o test H0:σ=1.2 versus H1: σ≠1.2, a random sample of size n=22 is obtained from a population that is known to be normally distributed. (a) If the sample standard deviation is determined to be s=0.8, compute the test statistic. (b) If the researcher decides to test this hypothesis at the α=0.10 level of significance, determine the critical values. (c) Will the researcher reject the null hypothesis? Why? that's all the question stated
To test H0 : σ=2.9 versus H1 : σ≠2.9​, a random sample of size n=21 is...
To test H0 : σ=2.9 versus H1 : σ≠2.9​, a random sample of size n=21 is obtained from a population that is known to be normally distributed. ​(a) If the sample standard deviation is determined to be s=2.6​, compute the test statistic. χ^2_0=____ ​(Round to three decimal places as​ needed.) ​(b) If the researcher decides to test this hypothesis at the α=0.05 level of​ significance, determine the critical values.The critical values are χ^2_0.025=____ and χ^2_0.975=____. ​(Round to three decimal places...
To test H0 : σ=2.9 versus H1 : σ≠2.9​, a random sample of size n=21 is...
To test H0 : σ=2.9 versus H1 : σ≠2.9​, a random sample of size n=21 is obtained from a population that is known to be normally distributed. ​(a) If the sample standard deviation is determined to be s=2.6​, compute the test statistic. χ^2_0=____ ​(Round to three decimal places as​ needed.) ​(b) If the researcher decides to test this hypothesis at the α=0.05 level of​ significance, determine the critical values.The critical values are χ^2_0.025=____ and χ^2_0.975=____. ​(Round to three decimal places...
To test H0: p = 0.65 versus H1: p> 0.65, a simple random sample of n...
To test H0: p = 0.65 versus H1: p> 0.65, a simple random sample of n = 100 individuals is obtained and x = 69 successes are observed. (a) What does it mean to make a Type II error for this test? (b) If the researcher decides to test this hypothesis at the alpha = 0.01 level of significance, compute the probability of making a Type II error if the true population proportion is 0.70. What is the power of...
1. To test H0: o=40 versus H1: o< 40​, a random sample of sizen=29 is obtained...
1. To test H0: o=40 versus H1: o< 40​, a random sample of sizen=29 is obtained from a population that is known to be normally distributed. ​a.  If the sample standard deviation is determined to be s=36.2, compute the test statistic. ​b. If the researcher decides to test this hypothesis at the a= 0.10 level of​ significance, use technology to determine the​ P-value. c. Will the researcher reject the null​ hypothesis? 2.To test H0: o=4.9 versus H1: o ≠ 4.9, a...
Question 17 of 21 In a hypothesis test with hypotheses H0: mu=60 and H1: mu is...
Question 17 of 21 In a hypothesis test with hypotheses H0: mu=60 and H1: mu is not equal to 60, a random sample of 37 elements selected from the population produced a mean of 62.5. Assuming that sigma= 5.2 and the population is normally distributed, what is the approximate p-value for this test? (round your answer to four decimal places)     A. 0.0011     B. 0.0035     C. 0.0067     D. 0.0089 Question 18 of 21 We use the t...
A test of H0: μ = 60 versus H1: μ ≠ 60 is performed using a...
A test of H0: μ = 60 versus H1: μ ≠ 60 is performed using a significance level of 0.01. The p-value is 0.033. If the true value of μ is 53, does the conclusion result in a Type I error, a Type II error, or a correct decision? a- Type II error b-Type I error c- Correct decision d-
A simple random sample of size n=64 is obtained from a population with mu equals 76...
A simple random sample of size n=64 is obtained from a population with mu equals 76 and sigma equals 8. ​(a) Describe the sampling distribution of x overbar. ​(b) What is Upper P left parenthesis x overbar greater than 77.9 right parenthesis​? ​(c) What is Upper P left parenthesis x overbar less than or equals 73.55 right parenthesis​? ​(d) What is Upper P left parenthesis 74.85 less than x overbar less than 78.1 right parenthesis​?
Suppose a simple random sample of size n=41 is obtained from a population with mu=61 and...
Suppose a simple random sample of size n=41 is obtained from a population with mu=61 and sigma=19. (b) Assuming the normal model can be​ used, determine ​P(x overbarx < 71.4). ​(c) Assuming the normal model can be​ used, determine ​P(x overbarx ≥ 69.1).
PROBLEM 4. 15 pts: Test H0: mu = 70 vs. H1: mu > 70 n= 9...
PROBLEM 4. 15 pts: Test H0: mu = 70 vs. H1: mu > 70 n= 9 sample mean = 75 sigma = 5.        Alpha =.05 n= 9 sample mean = 75 S = 5.        Alpha =.05 n=100 items 40 defective. H0: p= .3 vs. H1: p > .3 Alpha=.05
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT