Question

In: Statistics and Probability

To test H0: p = 0.65 versus H1: p> 0.65, a simple random sample of n...

To test H0: p = 0.65 versus H1: p> 0.65, a simple random sample of n = 100 individuals is obtained and x = 69 successes are observed.

(a) What does it mean to make a Type II error for this test?
(b) If the researcher decides to test this hypothesis at the alpha = 0.01 level of significance, compute the probability of making a Type II error if the true population proportion is 0.70. What is the power of the test?
(c) Redo part (b) if the true population proportion is 0.72.

Solutions

Expert Solution

I HOPE I WAS HELPFUL AND HAVE CLEARED YOUR DOUBTS.

THANKYOU


Related Solutions

To test H0 : σ=2.9 versus H1 : σ≠2.9​, a random sample of size n=21 is...
To test H0 : σ=2.9 versus H1 : σ≠2.9​, a random sample of size n=21 is obtained from a population that is known to be normally distributed. ​(a) If the sample standard deviation is determined to be s=2.6​, compute the test statistic. χ^2_0=____ ​(Round to three decimal places as​ needed.) ​(b) If the researcher decides to test this hypothesis at the α=0.05 level of​ significance, determine the critical values.The critical values are χ^2_0.025=____ and χ^2_0.975=____. ​(Round to three decimal places...
To test H0 : σ=2.9 versus H1 : σ≠2.9​, a random sample of size n=21 is...
To test H0 : σ=2.9 versus H1 : σ≠2.9​, a random sample of size n=21 is obtained from a population that is known to be normally distributed. ​(a) If the sample standard deviation is determined to be s=2.6​, compute the test statistic. χ^2_0=____ ​(Round to three decimal places as​ needed.) ​(b) If the researcher decides to test this hypothesis at the α=0.05 level of​ significance, determine the critical values.The critical values are χ^2_0.025=____ and χ^2_0.975=____. ​(Round to three decimal places...
To test Ho: ? = 400 versus H1: ? > 400, a simple random sample of...
To test Ho: ? = 400 versus H1: ? > 400, a simple random sample of n = 100 is obtained. Assume the population standard deviation is 80. If the researcher decides to test this hypothesis at the ?? = .05 level of significance, compute the probability of making a Type II Error if the true population mean is 420. What is the power of the test?
To test H0: mu=60 versus H1: mu<60, a random sample size n=25 is obtained from a...
To test H0: mu=60 versus H1: mu<60, a random sample size n=25 is obtained from a population that is known to be normally distributed. Complete parts a through d below. a) if x bar= 57.4 and s= 14.1, compute the test statistic. b)If the researcher decides to test this hypothesis at the confidence variable= .1 level of significance, determine the critical value(s). c)draw the t-distribution that depicts the critical region. d)will the researcher reject the null hypothesis?
To test H0: mean = 20 vs H1: mean < 20 a simple random sample of...
To test H0: mean = 20 vs H1: mean < 20 a simple random sample of size n = 18 is obtained from a population that Is known to be normally distributed (a) If x-hat = 18.3 and s = 4.3, compute the test statistic (b) Draw a t-distribution with the area that represents the P-value shaded (c) Approximate and interpret the P-value (d) If the researcher decides to test this hypothesis at the a = 0.05 level of significance,...
o test H0:σ=1.2 versus H1: σ≠1.2, a random sample of size n=22 is obtained from a...
o test H0:σ=1.2 versus H1: σ≠1.2, a random sample of size n=22 is obtained from a population that is known to be normally distributed. (a) If the sample standard deviation is determined to be s=0.8, compute the test statistic. (b) If the researcher decides to test this hypothesis at the α=0.10 level of significance, determine the critical values. (c) Will the researcher reject the null hypothesis? Why? that's all the question stated
For a hypothesis test of H0: p = 0.65 against the alternative Ha: p < 0.65,...
For a hypothesis test of H0: p = 0.65 against the alternative Ha: p < 0.65, the z test statistic is found to be -2.35. What can be said about his finding? The finding is significant at both α = 0.05 and α = 0.01. The finding is significant at α = 0.05 but not at α = 0.01. The finding is significant at α = 0.01 but not at α = 0.05. The finding is not significant at α...
Consider H0 : μ = 72 versus H1 : μ > 72 ∶ A random sample...
Consider H0 : μ = 72 versus H1 : μ > 72 ∶ A random sample of 16 observations taken from this population produced a sample mean of 75.2. The population is normally distributed with σ = 6. a. Calculate the p-value. b. Considering the p-value of part a, would you reject the null hypothesis if the test were made at a significance level of .01? c. Find the critical value and compare it with the test statistic. What would...
A test is made of H0: μ = 62 versus H1: μ > 62. A sample...
A test is made of H0: μ = 62 versus H1: μ > 62. A sample of size n = 79 is drawn, and 17) x = 68. The population standard deviation is σ = 23. Compute the value of the test statistic z and determine if H0 is rejected at the α = 0.01 level. A)0.26, H0 not rejected B) 0.26, H0 rejected C) 2.32, H0 not rejected D) 2.32, H0 rejected
1. To test H0: o=40 versus H1: o< 40​, a random sample of sizen=29 is obtained...
1. To test H0: o=40 versus H1: o< 40​, a random sample of sizen=29 is obtained from a population that is known to be normally distributed. ​a.  If the sample standard deviation is determined to be s=36.2, compute the test statistic. ​b. If the researcher decides to test this hypothesis at the a= 0.10 level of​ significance, use technology to determine the​ P-value. c. Will the researcher reject the null​ hypothesis? 2.To test H0: o=4.9 versus H1: o ≠ 4.9, a...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT