Question

In: Statistics and Probability

A test of H0: μ = 60 versus H1: μ ≠ 60 is performed using a...

A test of H0: μ = 60 versus H1: μ ≠ 60 is performed using a significance level of 0.01. The p-value is 0.033.
If the true value of μ is 53, does the conclusion result in a Type I error, a Type II error, or a correct decision?

a- Type II error

b-Type I error

c- Correct decision

d-

Solutions

Expert Solution

Solution:

Given: A test of H0: μ = 60 versus H1: μ ≠ 60 is performed using a significance level of 0.01.

p-value = 0.033.

Decision Rule:
Reject null hypothesis H0, if p-value < 0.01 level of significance, otherwise we fail to reject H0

Since  p-value = 0.033. > 0.01 level of significance, we fail to reject H0.

That means we conclude that: mean μ = 60 is correct.

But we are given that: the true value of μ is 53, that means null hypothesis actually not true or it is False.

So here we fail to reject H0, in fact null hypothesis is False.

Following are the definitions of Type I , Type II and correct decision.

Type I Error : Reject null hypothesis , in fact it is True.

Type II Error : Fail to reject null hypothesis , in fact it is False.

Correct decision: Reject H0, when it is False  or   Fail to reject H0, when it is True.

Thus according to definitions stated above, we have made Type II Error.

Type II Error : Fail to reject null hypothesis , in fact it is False.

a- Type II error


Related Solutions

A test is made of H0: μ = 62 versus H1: μ > 62. A sample...
A test is made of H0: μ = 62 versus H1: μ > 62. A sample of size n = 79 is drawn, and 17) x = 68. The population standard deviation is σ = 23. Compute the value of the test statistic z and determine if H0 is rejected at the α = 0.01 level. A)0.26, H0 not rejected B) 0.26, H0 rejected C) 2.32, H0 not rejected D) 2.32, H0 rejected
Suppose we want to test  H0 :  μ ≥ 30 versus  H1 :  μ < 30. Which of the following...
Suppose we want to test  H0 :  μ ≥ 30 versus  H1 :  μ < 30. Which of the following possible sample results based on a sample of size 54 gives the strongest evidence to reject  H0 in favor of  H1? a) x-bar = 32,  s = 4 b) x-bar = 25,  s = 16 c) x-bar = 28,  s = 6 d) x-bar = 29,  s = 10
Suppose we want to test  H0 :  μ ≥ 30 versus  H1 :  μ < 30. Which of the following...
Suppose we want to test  H0 :  μ ≥ 30 versus  H1 :  μ < 30. Which of the following possible sample results based on a sample of size 54 gives the strongest evidence to reject  H0 in favor of  H1? a. x= 32,  s = 4 b. x=29,  s = 10 c. x= 28,  s = 16 d. x= 25,  s = 6
Consider H0 : μ = 72 versus H1 : μ > 72 ∶ A random sample...
Consider H0 : μ = 72 versus H1 : μ > 72 ∶ A random sample of 16 observations taken from this population produced a sample mean of 75.2. The population is normally distributed with σ = 6. a. Calculate the p-value. b. Considering the p-value of part a, would you reject the null hypothesis if the test were made at a significance level of .01? c. Find the critical value and compare it with the test statistic. What would...
Suppose a test is performed to test H0: risk difference = 0 versus H1: risk difference ≠ 0, and the test rejects H0 at α = 0.05.
  Part 1. Suppose a test is performed to test H0: risk difference = 0 versus H1: risk difference ≠ 0, and the test rejects H0 at α = 0.05. Then, we can conclude that there is real significant evidence (α = 0.05) of a difference in proportions, _____________________ evidence that the risk difference is not 0, and _____________________ evidence that the relative risk and odds ratio are not _________________. Choose between significant, not significant, 0, 1. Part 2. Contrast...
Aminah wish to perform the hypothesis testing H0: μ =1 versus H1: μ <1 versus with...
Aminah wish to perform the hypothesis testing H0: μ =1 versus H1: μ <1 versus with α=0.10. . The sample size 25 was obtained independently from a population with standard deviation 10. State the distribution of the sample mean given that null hypothesis is true and find the critical value, then calculate the values of sample mean if she reject the null hypothesis. Finally, compute the p-value, if the sample mean is -2.
Question 1: Test the following hypothesis: H0:μ = 41.8 versus H1:μ > 41.8; y =43.1, n...
Question 1: Test the following hypothesis: H0:μ = 41.8 versus H1:μ > 41.8; y =43.1, n =16, σ = 3.1, α =0.05. Assume that the data comes from a normal distribution. The conclusion is to - reject the null hypothesis - fail to reject the null hypothesis Question 2: (not for forum discussion) Test the following hypothesis: H0:μ = 41.8 versus H1:μ ≠ 41.8; y =43.1, n =16, σ = 3.1, α =0.05. Assume that the data comes from a...
Questions 1)For a test of H0 : μ = μ0 vs. H1 : μ ≠ μ0,...
Questions 1)For a test of H0 : μ = μ0 vs. H1 : μ ≠ μ0, the value of the test statistic z obs is -1.34. What is the p-value of the hypothesis test? 2)For a test of H0 : μ = μ0 vs. H1 : μ > μ0, assume that the test statistic follows a t-distribution with 11 degrees of freedom. What is the critical value of the test if a 1% significance level is desired? 3)For a particular...
To test H0: mu=60 versus H1: mu<60, a random sample size n=25 is obtained from a...
To test H0: mu=60 versus H1: mu<60, a random sample size n=25 is obtained from a population that is known to be normally distributed. Complete parts a through d below. a) if x bar= 57.4 and s= 14.1, compute the test statistic. b)If the researcher decides to test this hypothesis at the confidence variable= .1 level of significance, determine the critical value(s). c)draw the t-distribution that depicts the critical region. d)will the researcher reject the null hypothesis?
2.In a test of the hypothesis H0: μ = 50 versus Ha: μ < 50, a...
2.In a test of the hypothesis H0: μ = 50 versus Ha: μ < 50, a sample of 40 observations is selected from a normal population and has a mean of 49.0 and a standard deviation of 4.1. a) Find the P-value for this test. b) Give all values of the level of significance α for which you would reject H0. 3.In a test of the hypothesis H0: μ = 10 versus Ha: μ≠ 10, a sample of 16 observations...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT