Question

In: Math

given the 3rd order differential equation: y''' - 3y'' + 2y' = ex / (1 +...

given the 3rd order differential equation: y''' - 3y'' + 2y' = ex / (1 + e-x)

i) set u = y' to reduce the order of the equation to order 2

ii) solve the reduced equation using variation of parameters

iii) find the solution of the original differential equation

Solutions

Expert Solution


Related Solutions

Solve the differential equation by variation of parameters. y'' + 3y' + 2y = cos(ex) y(x)...
Solve the differential equation by variation of parameters. y'' + 3y' + 2y = cos(ex) y(x) = _____.
Solve the Differential equation y'' - 2y' + y = ex
Solve the Differential equation y'' - 2y' + y = ex
Solve the given differential equation by undetermined coefficients (superposition approach) y'' + 2y' − 3y =...
Solve the given differential equation by undetermined coefficients (superposition approach) y'' + 2y' − 3y = (x^2 + x + 1) + e^−3x
find the general solution of the given differential equation 1. y''+2y'=3+4sin2t 2. 2y''+3y'+y=t2 +3sint
find the general solution of the given differential equation 1. y''+2y'=3+4sin2t 2. 2y''+3y'+y=t2 +3sint
Solve the differential equation by variation of parameters. y'' + 3y' + 2y = 1 4...
Solve the differential equation by variation of parameters. y'' + 3y' + 2y = 1 4 + ex y(x) =
1. Solve the given third-order differential equation by variation of parameters. y''' − 2y'' − y'...
1. Solve the given third-order differential equation by variation of parameters. y''' − 2y'' − y' + 2y = e^3x
Solve the given differential equation by undetermined coefficients. y''' − 3y'' + 3y' − y =...
Solve the given differential equation by undetermined coefficients. y''' − 3y'' + 3y' − y = x − 9^x
Solve the given differential equation by undetermined coefficients. y''' − 3y'' + 3y' − y =...
Solve the given differential equation by undetermined coefficients. y''' − 3y'' + 3y' − y = x − 8ex
find the general solution of the given differential equation 1. 2y''+3y'+y=t^2 +3sint find the solution of...
find the general solution of the given differential equation 1. 2y''+3y'+y=t^2 +3sint find the solution of the given initial value problem 1. y''−2y'−3y=3te^2t, y(0) =1, y'(0) =0 2.  y''−2y'+y=te^t +4, y(0) =1, y'(0) =1
(10 marks) Solve the second-order linear differential equation y′′ − 2y′ − 3y = −32e−x using...
Solve the second-order linear differential equation y′′ − 2y′ − 3y = −32e−x using the method of variation of parameters.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT