In: Statistics and Probability
A researcher is interested in determining whether there is a correlation between number of packs of cigarettes smoked
|
# packs of cigarettes smoked (X) |
(Y) |
|
0 |
80 |
|
0 |
70 |
|
1 |
72 |
|
1 |
70 |
|
2 |
68 |
|
2 |
65 |
|
3 |
69 |
|
3 |
60 |
|
4 |
58 |
|
4 |
55 |
day and longevity (in years). n=10.
| S.No | X | Y | (x-x̅)2 | (y-y̅)2 | (x-x̅)(y-y̅) |
| 1 | 0 | 80 | 4.0000 | 176.89 | -26.6000 |
| 2 | 0 | 70 | 4.0000 | 10.89 | -6.6000 |
| 3 | 1 | 72 | 1.0000 | 28.09 | -5.3000 |
| 4 | 1 | 70 | 1.0000 | 10.89 | -3.3000 |
| 5 | 2 | 68 | 0.0000 | 1.69 | 0.0000 |
| 6 | 2 | 65 | 0.0000 | 2.89 | 0.0000 |
| 7 | 3 | 69 | 1.0000 | 5.29 | 2.3000 |
| 8 | 3 | 60 | 1.0000 | 44.89 | -6.7000 |
| 9 | 4 | 58 | 4.0000 | 75.69 | -17.4000 |
| 10 | 4 | 55 | 4.0000 | 136.89 | -23.4000 |
| Total | 20 | 667 | 20.0000 | 494.10 | -87.0000 |
| Mean | 2.000 | 66.70 | SSX | SSY | SXY |
| null hypothesis: Ho: ρ | = | 0 | |
| Alternate Hypothesis: Ha: ρ | ≠ | 0 | |
| 0.05 level,two tail test and n-2= 8 df, critical t= | 2.3060 | ||
| Decision rule: reject Ho if absolute value of test statistic |t|>2.306 | |||
| correlation coefficient r= | Sxy/(√Sxx*Syy) =-87/sqrt(20*494.10)= | -0.8752 | |
| test stat t= | r*(√(n-2)/(1-r2))= | -5.117 | |
| since test statistic falls in rejection region we reject null hypothesis | ||||
| we have sufficient evidence to conclude that there is a correlation between number of packs of cigarettes smoked and longevity (in years) | ||||