In: Chemistry
Using standard electrode potentials calculate ΔG∘rxn and use its value to estimate the equilibrium constant for each of the reactions at 25 ∘C.
A. Cu2+(aq)+Zn(s)→Cu(s)+Zn2+(aq)
B. Br2(l)+2Cl−(aq)→2Br−(aq)+Cl2(g)
C. MnO2(s)+4H+(aq)+Cu(s)→Mn2+(aq)+2H2O(l)+Cu2+(aq)
Find K. All answers must have one significant figure. Please show all your work and equations used. Thank you!!
We will be calculating ΔG∘rxn for the following reactions.
ΔG∘rxn = nFE° =
Where n is number of moles of electrons. And F is Faradays constant.
A. Cu2+(aq)+Zn(s)→Cu(s)+Zn2+(aq)
This reaction can be divided in two parts oxidation and reduction
Cu2+(aq) + 2e- à Cu(s) E°red = +0.337V
ΔG∘red = -2 * 96500 * 0.33 = -63690 J
Zn(s) = Zn2+(aq) + 2e- E°ox = +0.7618V
ΔG∘ox = -2 * 96500 * 0.7618 = -147027.4 J
ΔG∘rxn = ΔG∘red + ΔG∘ox
= -63.690 + -147.027 = -210.7 kJ
E° = (0.05916/n) log K at 25°C
E° = E°red + E°ox = 0.33 + 0.7618 = 1.0918
Log K = E° * n / 0.05916 = 1.0918 * 4 / 0.05916 = 73.820
K = 6.6 * 10^73
B. Br2(l) + 2Cl−(aq) → 2Br−(aq) + Cl2(g)
This reaction can be divided in two parts oxidation and reduction
Br(l) + 2e-à 2Br-(aq) E°red = +1.066V
ΔG∘ox = -2 * 96500 * 1.066 = -205738 J
2Cl-(aq) à Cl2(g) + 2e- E°ox = -1.36 V
ΔG∘ox = -2 * 96500 * -1.36 = 262480 J
ΔG∘rxn = ΔG∘red + ΔG∘ox
= -205.738 + 262.480 = 56.7 kJ
E° = (0.05916/n) log K at 25°C
E° = E°red + E°ox = 1.066 + -1.36 = -0.294 V
Log K = E° * n / 0.05916 = -0.294 * 4 / 0.05916 = -19.87
K = 1.3 * 10^-20
C. MnO2(s)+4H+(aq)+Cu(s)→Mn2+(aq)+2H2O(l)+Cu2+(aq)
This reaction can be divided in two parts oxidation and reduction
MnO2(s) + 4H+(aq) + 2e- à Mn2+(aq) + 2H2O(l) E°red = +1.23 V
ΔG∘red = -2 * 96500 * 1.23 = -237390 J
Cu(s) à Cu2+(aq) + 2e- E°ox = - 0.337V
ΔG∘ox = -2 * 96500 * -0.337 = 65041 J
ΔG∘rxn = ΔG∘red + ΔG∘ox
= -237.390 + 65.041 = -172.3 kJ
E° = (0.05916/n) log K at 25°C
E° = E°red + E°ox = 1.23 – 0.337 = 0.893 V
Log K = E° * n / 0.05916 = 0.893 * 4 / 0.05916 = 60.37
K = 2.3 * 10^60