Question

In: Chemistry

Using standard reduction potentials, calculate the standard emf, free energy, and equilibrium constant at 298K for...

Using standard reduction potentials, calculate the standard emf, free energy, and equilibrium constant at 298K for each of the following reactions:

a. Cl2(g) + 2 I-(aq) → 2 Cl-(aq) + I2(s)

b. 2 NO3-(aq) + 8 H+(aq) 3 Cu(s) → 2 NO(g) + 4 H2O(l) + 3 Cu2+(aq)

c. Fe(s) + 2 Fe3+(aq) → 3 Fe2+(aq)

Ive posted this twice already and the answers have been really inconsistant

Solutions

Expert Solution

a. Cl2(g) + 2 I-(aq) → 2 Cl-(aq) + I2(s)

2I- (aq) -------------> I2(s)+2e-              E0 = -0.54V

Cl2(g) + 2e- --------> 2Cl- (aq)               E0 = 1.36V

--------------------------------------------------------------------------

Cl2(g) + 2 I-(aq) → 2 Cl-(aq) + I2(s)   E0 cell = 0.82V

          G0 = -nE0cell*F

                    = -2*0.82*96500 = -158260J

G0     = -RTlnK

-159260 = -8.314*298*2.303logKeq

logKeq   = -159260/-5705.8483

logKeq   = 28

Keq   = 1028

b. 3Cu(s) -------------------------> 3Cu+2 + 6e-          E0 = -0.34V

2NO3- +8H+ + 6e- --------> 2NO(g) + 4H2O(l) E0 = 0.96v

--------------------------------------------------------------------------

2 NO3-(aq) + 8 H+(aq)+ 3 Cu(s) → 2 NO(g) + 4 H2O(l) + 3 Cu2+(aq)      E0cell = 0.62V

G0 = -nE0cell*F

           = -6*0.62*96500   = -358980J

G0     = -RTlnK

-358980    =- 8.314*298*2.303logK

logK       = -358980/-5705.8483

logK      = 63

Keq    = 1063


Related Solutions

Using the standard reduction potentials listed in Appendix E in the textbook, calculate the equilibrium constant...
Using the standard reduction potentials listed in Appendix E in the textbook, calculate the equilibrium constant for each of the following reactions at 298 K. You may want to reference (Pages 868 - 871) Section 20.5 while completing this problem. Part B 3Ce4+(aq)+Bi(s)+H2O(l)→3Ce3+(aq)+BiO+(aq)+2H+(aq) Express the equilibrium constant to two significant digits. part C. N2H5+(aq)+4Fe(CN)63−(aq)→N2(g)+5H+(aq)+4Fe(CN)64−(aq) Express the equilibrium constant to two significant digits.
Use the standard reduction potentials to calculate the equilibrium constant for each of the following reactions:...
Use the standard reduction potentials to calculate the equilibrium constant for each of the following reactions: Note if deltaG° for each reaction would be greater than or less than zero. Co2+(aq) + Sn(s) = Co(s) + Sn2+(aq) Ag+(aq) + Cr2+(aq) = Ag(s) + Cr3+(aq)
1. Using the standard reduction potentials listed in Appendix E in the textbook, calculate the equilibrium...
1. Using the standard reduction potentials listed in Appendix E in the textbook, calculate the equilibrium constant for each of the following reactions at 298 K. A. Fe(s)+Ni2+(aq)?Fe2+(aq)+Ni(s) B.Co(s)+2H+(aq)?Co2+(aq)+H2(g) C.10Br?(aq)+2MnO?4(aq)+16H+(aq)?2Mn2+(aq)+8H2O(l)+5Br2(l) 2. If the equilibrium constant for a two-electron redox reaction at 298 K is 1.8×10?4, calculate the corresponding ?G? and E?cel under standard conditions. 2A. Express your answer using two significant figures. Delta G=kJ 2B. Express your answer using two significant figures. E cell= V
Use the table of standard reduction potentials given above to calculate the equilibrium constant at standard temperature (25 ∘C) for the following reaction:
Standard reduction potentials Reduction half-reaction E∘ (V) Ag+(aq)+e−→Ag(s) 0.80 Cu2+(aq)+2e−→Cu(s) 0.34 Sn4+(aq)+4e−→Sn(s) 0.15 2H+(aq)+2e−→H2(g) 0 Ni2+(aq)+2e−→Ni(s) −0.26 Fe2+(aq)+2e−→Fe(s) −0.45 Zn2+(aq)+2e−→Zn(s) −0.76 Al3+(aq)+3e−→Al(s) −1.66 Mg2+(aq)+2e−→Mg(s) −2.37 Part A Use the table of standard reduction potentials given above to calculate the equilibrium constant at standard temperature (25 ∘C) for the following reaction: Fe(s)+Ni2+(aq)→Fe2+(aq)+Ni(s) Express your answer numerically. Part B Calculate the standard cell potential (E∘) for the reaction X(s)+Y+(aq)→X+(aq)+Y(s) if K = 3.04×10−3. Express your answer to three significant figures and include the appropriate...
Using standard electrode potentials calculate ΔG∘ and use its value to estimate the equilibrium constant for...
Using standard electrode potentials calculate ΔG∘ and use its value to estimate the equilibrium constant for each of the reactions at 25 ∘C. Part A Cu2+(aq)+Zn(s)→Cu(s)+Zn2+(aq) USE ANY OF THESE VALUES Cu 2+ (aq) + e - ¡Cu^+ (aq) =0.16 e cell reduction Cu + (aq) + e - ¡ Cu(s) 0.52 ecell reduction potential Zn 2+ (aq) + 2 e - ¡ Zn(s) -0.76 cell reduction potential
Using standard electrode potentials calculate ΔG∘rxn and use its value to estimate the equilibrium constant for...
Using standard electrode potentials calculate ΔG∘rxn and use its value to estimate the equilibrium constant for each of the reactions at 25 ∘C. A. Cu2+(aq)+Zn(s)→Cu(s)+Zn2+(aq) B. Br2(l)+2Cl−(aq)→2Br−(aq)+Cl2(g) C. MnO2(s)+4H+(aq)+Cu(s)→Mn2+(aq)+2H2O(l)+Cu2+(aq) Find K. All answers must have one significant figure. Please show all your work and equations used. Thank you!!
4. Calculate the standard reduction potential and the standard free energy change for each of the...
4. Calculate the standard reduction potential and the standard free energy change for each of the following oxidation-reduction reactions: a. Ubiquinol (QH2) + 2 Cytochrome C(Fe +3) <--------> Ubiquinone (Q) + 2 Cytochrome C(Fe+2) + 2H+ b. Succinate + ½ O2 <--------> Fumarate + H2O c. Explain how odd chain fatty acids can serve as gluconeogenic precursors.
Calculate the equilibrium constant for each of the reactions at 25∘C. Standard Electrode Potentials at 25...
Calculate the equilibrium constant for each of the reactions at 25∘C. Standard Electrode Potentials at 25 ∘C Reduction Half-Reaction E∘(V) Fe3+(aq)+3e− →Fe(s) -0.036 Sn2+(aq)+2e− →Sn(s) -0.14 Ni2+(aq)+2e− →Ni(s) -0.23 O2(g)+2H2O(l)+4e− →4OH−(aq) 0.40 Br2(l)+2e− →2Br− 1.09 I2(s)+2e− →2I− 0.54 Part A 2Fe3+(aq)+3Sn(s)→2Fe(s)+3Sn2+(aq) Express your answer using two significant figures. Part B O2(g)+2H2O(l)+2Ni(s)→4OH−(aq)+2Ni2+(aq) Express your answer using two significant figures. Part C Br2(l)+2I−(aq)→2Br−(aq)+I2(s) Express your answer using two significant figures.
Using standard Gibbs energy of formation values given in the table, calculate the equilibrium constant K...
Using standard Gibbs energy of formation values given in the table, calculate the equilibrium constant K of the reaction Cl2(g)+2NO(g)⇌2NOCl(g) The standard Gibbs energy change of the reaction represents the drive the reaction has under standard conditions to move toward equilibrium from point A to point X in the diagram. Substance ΔfG∘ (kJ mol−1) Cl2(g) 0 NO(g) 86.71 NOCl(g) 66.30
What is the standard free energy of the reaction, in kJ, at 298K for: 1 A...
What is the standard free energy of the reaction, in kJ, at 298K for: 1 A (aq) + 1 B (aq) <--> 2 C (aq) + 2 D (aq) if   ΔH° (A)= -3.4134 kJ/mol , ΔH° (B) = 93.8823 kJ/mol, ΔH° (C) = -26.8495 kJ/mol, and ΔH° (D) = -39.4984 kJ/mol ΔS° (A)= 33.3845 J/(mol K) , ΔS° (B) = 92.5722 J/(mol K) , ΔS° (C) = -59.1781 J/(mol K) , and ΔS° (D) = -12.7602 J/(mol K)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT