Question

In: Math

1.Consider the function: f(x, y) = 2020 + y3-3xy + x3. a) Find fx(x, y), and...

1.Consider the function: f(x, y) = 2020 + y3-3xy + x3.

a) Find fx(x, y), and fye(x, y).

b) Find all critical points of f(x, y).

c) Classify the critical points of f(x, y) (as local max, local min, saddle).

2.Consider f(x) = 2x-x2and g(x) = x2

a) [2 points] Find the intersection points (if any) of the graphs of f(x) and g(x).

b) [4 points] Graph the functions f(x) and g(x), and shade the region bounded by: f(x),

g(x), x = 0, x = 2.

c) [8 points] Find the area of the shaded region.

Solutions

Expert Solution


Related Solutions

Let f (x, y) = -x3 - y3 + 9xy - 26. Check that (0,0) and...
Let f (x, y) = -x3 - y3 + 9xy - 26. Check that (0,0) and (3,3) are stationary points of f and classify these points as maximum, minimum or saddle point. Obtain the maximum or minimum value of f.
1. The function f(x, y) = ln(x3 + 2) / (y2 + 3) (this function is...
1. The function f(x, y) = ln(x3 + 2) / (y2 + 3) (this function is of a fraction format) : a. has a stationary point at (1, 0) b. has a stationary point at (0, 0) c. has a stationary point at (0, 1) d. has no stationary points 2. Which of the following functions don’t have unit elasticity at P = 6? a. Demand: Qd = 24 - 2 P b. Demand: Qd = 10/P c. Demand: log...
Let f(x,y) = 3x3 + 3x2 y − y3 − 15x. a) Find and classify the...
Let f(x,y) = 3x3 + 3x2 y − y3 − 15x. a) Find and classify the critical points of f. Use any method taught during the course (the second-derivative test or completing the square). b) One of the critical points is (a,b) = (1,1). Write down the second-degree Taylor approximation of f about this point and motivate, both with computations and with words, how one can see from this approximation what kind of critical point (1,1) is. Use completing the...
Let f(x,y) = 3x3 + 3x2 y − y3 − 15x. a) Find and classify the...
Let f(x,y) = 3x3 + 3x2 y − y3 − 15x. a) Find and classify the critical points of f. Use any method taught during the course (the second-derivative test or completing the square). b) One of the critical points is (a,b) = (1,1). Write down the second-degree Taylor approximation of f about this point and motivate, both with computations and with words, how one can see from this approximation what kind of critical point (1,1) is. Use completing the...
consider the function f(x) = 1 + x3  e-.3x a. what is f'(x) b. what is f''(x)...
consider the function f(x) = 1 + x3  e-.3x a. what is f'(x) b. what is f''(x) c. what are the critical points of f(x) d. are the critical points a local min or local max or neither? e. find the inflection points f. if we define f(x) to have the domain of [2,50] compute the global extreme of f(x) on that interval
Consider the function f(x)= x3 x2 − 1 Express the domain of the function in interval...
Consider the function f(x)= x3 x2 − 1 Express the domain of the function in interval notation: Find the y-intercept: y=   . Find all the x-intercepts (enter your answer as a comma-separated list): x=   . On which intervals is the function positive?   On which intervals is the function negative?   Does f have any symmetries? f is even;f is odd;     f is periodic;None of the above. Find all the asymptotes of f (enter your answers as equations): Vertical asymptote (left):   ; Vertical...
Let x,y ∈ R3 such that x = (x1,x2,x3) and y = (y1,y2,y3) determine if <x,y>=...
Let x,y ∈ R3 such that x = (x1,x2,x3) and y = (y1,y2,y3) determine if <x,y>= x1y1+2x2y2+3x3y3    is an inner product
Consider the function f(x, y) = 4xy − 2x 4 − y 2 . (a) Find...
Consider the function f(x, y) = 4xy − 2x 4 − y 2 . (a) Find the critical points of f. (b) Use the second partials test to classify the critical points. (c) Show that f does not have a global minimum.
y'(1+x^2)=(1/1-x)-3xy find the general solution.
y'(1+x^2)=(1/1-x)-3xy find the general solution.
Consider the function. f(x) = x^2 − 1, x ≥ 1 (a) Find the inverse function...
Consider the function. f(x) = x^2 − 1, x ≥ 1 (a) Find the inverse function of f. f ^−1(x) = (b) Graph f and f ^−1 on the same set of coordinate axes. (c) Describe the relationship between the graphs. The graphs of f and f^−1 are reflections of each other across the line ____answer here___________. (d) State the domain and range of f and f^−1. (Enter your answers using interval notation.) Domain of f Range of f Domain...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT