Find the Taylor polynomial of degree 2 centered at a = 1 for the
function f(x) = e^(2x) . Use Taylor’s Inequality to estimate the
accuracy of the approximation e^(2x) ≈ T2(x) when 0.7 ≤
x ≤ 1.3
Using the function f(x)=ln(1+x)
a. Find the 8 degree taylor polynomial centered at 0 and
simplify.
b. using your 8th degree taylor polynomial and taylors
inequality, find the magnitude of the maximum possible error on
[0,0.1]
c.approximate ln(1.1) using your 8th degree taylor polynomial.
what is the actual error? is it smaller than your estimated
error?Round answer to enough decimal places so you can
determine.
d. create a plot of the function f(x)=ln(1+x) along with your
taylor polynomial. Based on...
Find/calculate the 3rd degree Taylor polynomial of the function f(x) = xcos(x) that is in the heighborhood of x = 0 as well as the heighborhood of x = (π/2)
Find/calculate the 3rd degree Taylor polynomial of the function f(x) = xcos(x) that is in the heighborhood of x = 0 as well as the heighborhood of x = (π/2)
f(x,y)=sin(2x)sin(y)
intervals for x and y:
-π/2 ≤ x ≤ π/2 and -π ≤ y ≤ π
find extrema and saddle points
In the solution, I mainly interested how to
findcritical points in case of the system of trigonometric
equations (fx=0 and fy=0).
,
Find the Taylor series for f ( x ) centered at the given value
of a . (Assume that f has a power series expansion. Do not show
that R n ( x ) → 0 . f ( x ) = 2 /x , a = − 4