f(x,y)=sin(2x)sin(y)
intervals for x and y:
-π/2 ≤ x ≤ π/2 and -π ≤ y ≤ π
find extrema and saddle points
In the solution, I mainly interested how to
findcritical points in case of the system of trigonometric
equations (fx=0 and fy=0).
,
Find the Fourier Series for the function defined over -5 < x
< 5
f(x) = -2 when -5<x<0 and f(x) = 3 when 0<x<5
You can use either the real or complex form but must show
work.
Plot on Desmos the first 10 terms of the series along with the
original
function.
Both parts.
a) identify Fourier series for full wave rectified sine function
f(x) = | sin(x) |.
b) f(t) = cos(t) but period of 6, so t = [-3,3] (L = 6) Find the
Fourier series of the resulting function.
Find a power series for the function, centered at
c.
f(x) =
3
2x − 1
, c = 2
f(x) =
∞
n = 0
Determine the interval of convergence. (Enter your answer using
interval notation.)