In: Statistics and Probability
The life expectancy of a person in 24 randomly selected countries for the year 2011 is in the table below.
a.) What is the range of the life expectancy rates? b.) What is the median of the life expectancy rates?
77.2 |
55.4 |
69.9 |
76.4 |
75.0 |
78.2 |
73.0 |
70.8 |
82.6 |
68.9 |
81.0 |
54.2 |
5) Cholesterol levels were collected from patients two days after they had a heart attack and are shown in the table below. (Show all work. Just the answer, without supporting work, will receive no credit.)
270 |
236 |
210 |
142 |
280 |
272 |
160 |
220 |
226 |
242 |
186 |
266 |
206 |
318 |
294 |
282 |
234 |
224 |
276 |
282 |
360 |
310 |
280 |
278 |
288 |
288 |
244 |
236 |
a.) What is the sample mean?
b.) What is the sample standard deviation? (Round your answer to two decimal
places.
6) There are 4 black marbles and 6 red marbles in a box. Consider selecting one marble at a time from the box. What is the probability that the first marble is black and the second marble is also black. Express the probability in fraction format. (Show all work. Just the answer, without supporting work, will receive no credit.) a.) Assume the marble is selected with replacement. b.) Assume the marble is selected without replacement.
( 4 )
Range :
Ordering the data from least to greatest, we get:
54.2 55.4 68.9 69.9 70.8 73.0 75.0 76.4 77.2 78.2 81.0 82.6
The lowest value is 54.2.
The highest value is 82.6.
The range = 82.6 - 54.2 = 28.4.
The range of data set is 28.4.
Median :
The median is the middle number in a sorted list of numbers. So, to find the median, we need to place the numbers in value order and find the middle number.
Ordering the data from least to greatest, we get:
54.2 55.4 68.9 69.9 70.8 73.0 75.0 76.4 77.2 78.2 81.0 82.6
As you can see, we do not have just one middle number but we have a pair of middle numbers, so the median is the average of these two numbers:
Median = ( 73.0+75.0) / 2 = 74
The median of the data set is 74.
( 5 )
( a ) sample mean = Sum of terms / Number of terms
= 7110 / 14
= 253.9286
( b ) sample standard deviation :
Create the following table.
data | data-mean | (data - mean)2 |
270 | 16.0714 | 258.28989796 |
236 | -17.9286 | 321.43469796 |
210 | -43.9286 | 1929.72189796 |
142 | -111.9286 | 12528.01149796 |
280 | 26.0714 | 679.71789796 |
272 | 18.0714 | 326.57549796 |
160 | -93.9286 | 8822.58189796 |
220 | -33.9286 | 1151.14989796 |
226 | -27.9286 | 780.00669796 |
242 | -11.9286 | 142.29149796 |
186 | -67.9286 | 4614.29469796 |
266 | 12.0714 | 145.71869796 |
206 | -47.9286 | 2297.15069796 |
318 | 64.0714 | 4105.14429796 |
294 | 40.0714 | 1605.71709796 |
282 | 28.0714 | 788.00349796 |
234 | -19.9286 | 397.14909796 |
224 | -29.9286 | 895.72109796 |
276 | 22.0714 | 487.14669796 |
282 | 28.0714 | 788.00349796 |
360 | 106.0714 | 11251.14189796 |
310 | 56.0714 | 3144.00189796 |
280 | 26.0714 | 679.71789796 |
278 | 24.0714 | 579.43229796 |
288 | 34.0714 | 1160.86029796 |
288 | 34.0714 | 1160.86029796 |
244 | -9.9286 | 98.57709796 |
236 | -17.9286 | 321.43469796 |
∑(xi−X bar )2=61459.8571
S = sqrt( 61459.8571 / 27 )
= 47.7105
S = 47.71