In: Mechanical Engineering
For the given set of strand burner data (given also as a .txt for easy excel import):
Calculate the parameters, a and n, of St. Robert’s Law for each T0. Plot the results in log-log space.
Calculate the temperature sensitivity of the propellant, σp at P=0.5 MPa, P=5 MPa, and P=10 MPa.
| 
 Hypothetical Strand Burner Data  | 
||||||
| 
 T0=  | 
 300  | 
 K  | 
 T0=  | 
 350  | 
 K  | 
|
| 
 P (Mpa)  | 
 rb (Cm/s)  | 
 P (Mpa)  | 
 rb (Cm/s)  | 
|||
| 
 0.5  | 
 2.77E-01  | 
 0.5  | 
 2.81E-01  | 
|||
| 
 1  | 
 4.55E-01  | 
 1  | 
 4.70E-01  | 
|||
| 
 1.5  | 
 5.66E-01  | 
 1.5  | 
 5.93E-01  | 
|||
| 
 2  | 
 6.83E-01  | 
 2  | 
 7.21E-01  | 
|||
| 
 2.5  | 
 7.69E-01  | 
 2.5  | 
 8.39E-01  | 
|||
| 
 3  | 
 8.68E-01  | 
 3  | 
 9.70E-01  | 
|||
| 
 3.5  | 
 9.62E-01  | 
 3.5  | 
 1.05E+00  | 
|||
| 
 4  | 
 1.09E+00  | 
 4  | 
 1.14E+00  | 
|||
| 
 4.5  | 
 1.18E+00  | 
 4.5  | 
 1.27E+00  | 
|||
| 
 5  | 
 1.22E+00  | 
 5  | 
 1.34E+00  | 
|||
| 
 5.5  | 
 1.32E+00  | 
 5.5  | 
 1.45E+00  | 
|||
| 
 6  | 
 1.37E+00  | 
 6  | 
 1.54E+00  | 
|||
| 
 6.5  | 
 1.45E+00  | 
 6.5  | 
 1.63E+00  | 
|||
| 
 7  | 
 1.52E+00  | 
 7  | 
 1.69E+00  | 
|||
| 
 7.5  | 
 1.59E+00  | 
 7.5  | 
 1.77E+00  | 
|||
| 
 8  | 
 1.70E+00  | 
 8  | 
 1.83E+00  | 
|||
| 
 8.5  | 
 1.77E+00  | 
 8.5  | 
 1.91E+00  | 
|||
| 
 9  | 
 1.79E+00  | 
 9  | 
 2.00E+00  | 
|||
| 
 9.5  | 
 1.88E+00  | 
 9.5  | 
 2.08E+00  | 
|||
| 
 10  | 
 1.96E+00  | 
 10  | 
 2.15E+00  | 
|||


from plot slope n = 0.645
log a = -0.359
a = 0.4375 cm/(s-Mpa^n)

slope n = 0.674
a = 0.456 cm/(s-Mpa^n)
Temperature sensivity = d(log r)/dT at const pressure
1) At P = 0.5Mpa, temperature sensivity = 0.0001245 /K
2) At P = 5Mpa, temperature sensivity = 0.000814 /K
3) At P = 10 Mpa, temperature sensivity = 0.0008036 /K