Question

In: Statistics and Probability

The height of women ages 18 to 24 are approxiametly bell shaped with X=64.5 inches and...

The height of women ages 18 to 24 are approxiametly bell shaped with X=64.5 inches and S=2.5 inches. according to the empirical rule, approximately what percentage of the women's height would you expect to fall between:

*explain and show work

a) 62 and 67 inches?

b) 59.5 to 69.5 inches?

c) 57 to 72 inches?

d) if there was a height equal to 77 inches, could you consider such a height and outlier?explain

Solutions

Expert Solution

Mean = = 64.5

Standard deviation = = 2.5

Empirical rule:

1) About 68% of data lies in the 1 standard deviation from the mean.

that is in the interval

2) About 95% of data lies in the 2 standard deviations from the mean.

that is in the interval

3) About 99.7% of data lies in the 3 standard deviations from the mean.

that is in the interval
---------------------------------------------------------------------------------------------------------------

a)

= 64.5 - 2.5 = 62

= 64.5 + 2.5 = 67

About 68% of data lies in the 1 standard deviation from the mean.

that is in the interval

68% of the women's height would you expect to fall between 62 and 67 inches.

b)

= 64.5 - 2*2.5 = 59.5

= 64.5 + 2*2.5 = 69.5

About 95% of data lies in the 2 standard deviations from the mean.

that is in the interval

95% of the women's height would you expect to fall between 59.5 and 69.5 inches.

c)

= 64.5 - 3*2.5 = 57

= 64.5 + 3*2.5 = 72

About 99.7% of data lies in the 3 standard deviations from the mean.

that is in the interval

99.7% of the women's height would you expect to fall between 57 and 72 inches.

d)

Any z-score is greater than 3 or less than -3 is considered to be an outlier.

x = 77

Z score is beyond ( -3, 3) so the height equal to 77 inches is an outlier.


Related Solutions

5) The average height of women is ̄y = 64.5 inches, the average height of men...
5) The average height of women is ̄y = 64.5 inches, the average height of men is ̄y = 67.5 inches. For both the standard deviation is about s = 3 inches. (a) Suppose you take a sample of 4 women and 4 men. Construct a 95% CI for both. Do the confidence intervals overlap? (b) Now repeat using a sample of 225 men and 225 women. Do the confidence intervals overlap? (c) Can you explain what happened? Why is...
The mean height of women in the United States (ages 20-29) is 64.2 inches with a...
The mean height of women in the United States (ages 20-29) is 64.2 inches with a standard deviation of 2.9 inches. A random sample of 60 women in this age group is selected. Assume that the distribution of these heights is normally distributed. Are you more likely to randomly select 1 woman with a height more than 70 inches or are you more likely to select a random sample of 20 women with a mean height more than 70 inches?...
The height of women ages​ 20-29 are normally​ distributed, with a mean of 64.3 inches. Assume...
The height of women ages​ 20-29 are normally​ distributed, with a mean of 64.3 inches. Assume sigmaequals2.5 inches. Are you more likely to randomly select 1 woman with a height less than 66.2 inches or are you more likely to select a sample of 18 women with a mean height less than 66.2 ​inches? Explain. What is the probability of randomly selecting 1 woman with a height of less than 66.2 ​inches? _______​(Round to four decimal places as​ needed.) What...
The height of women ages​ 20-29 is normally​ distributed, with a mean of 64.2 inches. Assume...
The height of women ages​ 20-29 is normally​ distributed, with a mean of 64.2 inches. Assume sigmaequals2.9 inches. Are you more likely to randomly select 1 woman with a height less than 65.3 inches or are you more likely to select a sample of 29 women with a mean height less than 65.3 ​inches? Explain. LOADING... Click the icon to view page 1 of the standard normal table. LOADING... Click the icon to view page 2 of the standard normal...
The mean height of women in a country​ (ages 20minus−​29) is 64.1 inches. A random sample...
The mean height of women in a country​ (ages 20minus−​29) is 64.1 inches. A random sample of fifty women in this age group is selected. What is the probability that the mean height for the sample is greater than sixtyfive ​inches? Assume sigmaσequals=2.75 The probability that the mean height for the sample is greater than sixtyfive inches is
The height of women ages​ 20-29 is normally​ distributed, with a mean of 64.7 inches. Assume...
The height of women ages​ 20-29 is normally​ distributed, with a mean of 64.7 inches. Assume sigmaσequals=2.7 inches. Are you more likely to randomly select 1 woman with a height less than 67.267.2 inches or are you more likely to select a sample of 10 women with a mean height less than 67.2 ​inches? Explain. LOADING... Click the icon to view page 1 of the standard normal table. LOADING... Click the icon to view page 2 of the standard normal...
The mean height of women in a country? (ages 20minus?29) is 64.4 inches. A random sample...
The mean height of women in a country? (ages 20minus?29) is 64.4 inches. A random sample of 55 women in this age group is selected. What is the probability that the mean height for the sample is greater than 65 ?inches? Assume sigmaequals2.54. The probability that the mean height for the sample is greater than 65 inches is
The mean height of women in a country​ (ages 20minus−​29) is 63.6 inches. A random sample...
The mean height of women in a country​ (ages 20minus−​29) is 63.6 inches. A random sample of 65 women in this age group is selected. What is the probability that the mean height for the sample is greater than 6464 ​inches? Assume sigmaσequals=2.87. The probability that the mean height for the sample is greater than 64 inches ​(Round to four decimal places as​ needed.)
The height of women ages​ 20-29 is normally​ distributed, with a mean of 64.2 inches. Assume...
The height of women ages​ 20-29 is normally​ distributed, with a mean of 64.2 inches. Assume σ=2.7 inches. Are you more likely to randomly select 1 woman with a height less than 66.3 inches or are you more likely to select a sample of 14 women with a mean height less than 66.3​inches? Explain.
The mean height of women in a country​ (ages 20minus−​29) is 63.8 inches. A random sample...
The mean height of women in a country​ (ages 20minus−​29) is 63.8 inches. A random sample of 55 women in this age group is selected. What is the probability that the mean height for the sample is greater than 64 ​inches? Assume sigmaσequals=2.65. The probability that the mean height for the sample is greater than 64 inches is
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT