Question

In: Statistics and Probability

The height of women ages​ 20-29 is normally​ distributed, with a mean of 64.7 inches. Assume...

The height of women ages​ 20-29 is normally​ distributed, with a mean of

64.7

inches. Assume

sigmaσequals=2.7

inches. Are you more likely to randomly select 1 woman with a height less than

67.267.2

inches or are you more likely to select a sample of

10

women with a mean height less than

67.2

​inches? Explain.

LOADING...

Click the icon to view page 1 of the standard normal table.

LOADING...

Click the icon to view page 2 of the standard normal table.

What is the probability of randomly selecting 1 woman with a height less than

67.2

​inches?

nothing

​(Round to four decimal places as​ needed.)

Solutions

Expert Solution

It is given that

Population mean

Population standard deviation

We have to find the probability for a randomly selected woman with a height less than 67.2 inches, i.e. x = 67.2

Using the formula

setting the given values, we get

this gives us

using z distribution table for the value 0.9259,(look for 0.9 in the left most column and 0.03 in the top most row, then select the intersecting cell) , we get  

Probability = 0.8238

Population mean

Population standard deviation

sample size = 10

We have to find the probability for a sample mean of 10 woman with a height less than 67.2 inches, i.e. x(bar) = 67.2

Using the formula

setting the given values, we get

this gives us

using z distribution table for the value 2.928(look for 2.9 in the left most column and 0.03 in the top most row, then select the intersecting cell) , we get

Probability = 0.9983

So, we are more likely to select a sample of 10 women with a mean height less than 67.2 inches because it has higher probability.


Related Solutions

The height of women ages​ 20-29 is normally​ distributed, with a mean of 64.7 inches. Assume...
The height of women ages​ 20-29 is normally​ distributed, with a mean of 64.7 inches. Assume sigma equals 2.7 inches. Are you more likely to randomly select 1 woman with a height less than 66 inches or are you more likely to select a sample of 30 women with a mean height less than 66 ​inches? Explain. What is the probability of randomly selecting 1 woman with a height less than 66 ​inches? What is the probability of selecting a...
The height of women ages​ 20-29 are normally​ distributed, with a mean of 64.3 inches. Assume...
The height of women ages​ 20-29 are normally​ distributed, with a mean of 64.3 inches. Assume sigmaequals2.5 inches. Are you more likely to randomly select 1 woman with a height less than 66.2 inches or are you more likely to select a sample of 18 women with a mean height less than 66.2 ​inches? Explain. What is the probability of randomly selecting 1 woman with a height of less than 66.2 ​inches? _______​(Round to four decimal places as​ needed.) What...
The height of women ages​ 20-29 is normally​ distributed, with a mean of 64.2 inches. Assume...
The height of women ages​ 20-29 is normally​ distributed, with a mean of 64.2 inches. Assume sigmaequals2.9 inches. Are you more likely to randomly select 1 woman with a height less than 65.3 inches or are you more likely to select a sample of 29 women with a mean height less than 65.3 ​inches? Explain. LOADING... Click the icon to view page 1 of the standard normal table. LOADING... Click the icon to view page 2 of the standard normal...
The height of women ages​ 20-29 is normally​ distributed, with a mean of 64.2 inches. Assume...
The height of women ages​ 20-29 is normally​ distributed, with a mean of 64.2 inches. Assume σ=2.7 inches. Are you more likely to randomly select 1 woman with a height less than 66.3 inches or are you more likely to select a sample of 14 women with a mean height less than 66.3​inches? Explain.
The height of women ages​ 20-29 is normally​ distributed, with a mean of 64.4 inches. Assume...
The height of women ages​ 20-29 is normally​ distributed, with a mean of 64.4 inches. Assume sigma = 2.6 inches. Are you more likely to randomly select 1 woman with a height less than 65.8 inches or are you more likely to select a sample of 22 women with a mean height less than 65.8 ​inches? Explain. What is the probability of randomly selecting 1 woman with a height less than 65.8 ​inches? What is the probability of selecting a...
The height of women ages​ 20-29 is normally​ distributed, with a mean of 63.6 inches. Assume...
The height of women ages​ 20-29 is normally​ distributed, with a mean of 63.6 inches. Assume sigma σ equals = 2.6 inches. Are you more likely to randomly select 1 woman with a height less than 65.2 inches or are you more likely to select a sample of 18 women with a mean height less than 65.2 ​inches? Explain.
The height of women (ages 20 to 29) are approximaltely normally distributed with a mean of...
The height of women (ages 20 to 29) are approximaltely normally distributed with a mean of 68 inches and standard deviation of 3.8 inches. The heights of men (ages 20 to 29) are approximately normally distributed with a mean height of 71.5 inches and a standard deviation of 3.4 inches. A) Use the z- score to compare a woman that is 5 feet 7 inches and a man that is 5 feet 7 inches tall. B) If a z-score of...
The mean height of women in the United States (ages 20-29) is 64.2 inches with a...
The mean height of women in the United States (ages 20-29) is 64.2 inches with a standard deviation of 2.9 inches. A random sample of 60 women in this age group is selected. Assume that the distribution of these heights is normally distributed. Are you more likely to randomly select 1 woman with a height more than 70 inches or are you more likely to select a random sample of 20 women with a mean height more than 70 inches?...
The mean height of women in a country​ (ages 20−​29) is 64.2 inches. A random sample...
The mean height of women in a country​ (ages 20−​29) is 64.2 inches. A random sample of 50 women in this age group is selected. What is the probability that the mean height for the sample is greater than 65​ inches? Assume σ equals=2.58. Round to four decimal places.
The mean height of women in a country? (ages 20??29) is 63.6 inches. A random sample...
The mean height of women in a country? (ages 20??29) is 63.6 inches. A random sample of 50 women in this age group is selected. What is the probability that the mean height for the sample is greater than 64 ?inches? Assume ?=2.74 The probability that the mean height for the sample is greater than 64 inches is ___ ?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT