In: Statistics and Probability
Test a model that tries to explain differences in BMI based on parents' average BMI, a person's age, number of weekly hours of exercise, and the number of times a person eats outside.
Which independent variable (IV) does not explain variability in a person's BMI? Explain.
Observation | BMI | Average parents' BMI | Age | Weekly Exercise | Number of times eating outside |
1 | 24 | 28 | 34 | 4 | 3 |
2 | 26 | 33 | 23 | 3 | 4 |
3 | 30 | 30 | 56 | 0 | 3 |
4 | 32 | 28 | 45 | 1 | 4 |
5 | 27 | 25 | 65 | 2 | 2 |
6 | 34 | 38 | 34 | 0 | 6 |
7 | 19 | 22 | 54 | 6 | 0 |
8 | 22 | 28 | 65 | 6 | 0 |
9 | 25 | 30 | 35 | 4 | 3 |
10 | 34 | 37 | 24 | 0 | 6 |
11 | 30 | 35 | 19 | 0 | 6 |
12 | 27 | 30 | 24 | 1 | 5 |
13 | 29 | 25 | 23 | 0 | 5 |
14 | 34 | 30 | 32 | 0 | 6 |
15 | 19 | 24 | 54 | 5 | 0 |
16 | 25 | 24 | 36 | 4 | 3 |
17 | 28 | 25 | 52 | 3 | 3 |
18 | 19 | 25 | 65 | 4 | 0 |
19 | 25 | 30 | 34 | 2 | 3 |
20 | 30 | 28 | 54 | 1 | 5 |
21 | 31 | 29 | 65 | 1 | 5 |
22 | 16 | 15 | 35 | 7 | 0 |
23 | 19 | 20 | 23 | 6 | 0 |
24 | 26 | 25 | 56 | 3 | 2 |
25 | 34 | 28 | 45 | 0 | 6 |
26 | 33 | 39 | 65 | 0 | 4 |
27 | 29 | 37 | 34 | 1 | 4 |
28 | 32 | 35 | 32 | 0 | 6 |
29 | 22 | 27 | 54 | 5 | 0 |
30 | 27 | 30 | 36 | 3 | 2 |
31 | 24 | 22 | 52 | 4 | 1 |
Solution:
Here our Dependent variable(Y) = BMI
And Independent Variables :
X1=Average parents BMI
X2=Age
X3=Weekly Exercise
X4=Number of times eating outside.
Here , we will perform Multiple Regression in SPSS.
Our Entered data :
Case Summariesa |
||||||
Observation |
Y |
X1 |
X2 |
X3 |
X4 |
|
1 |
24 |
28 |
34 |
4 |
3 |
|
2 |
26 |
33 |
23 |
3 |
4 |
|
3 |
30 |
30 |
56 |
0 |
3 |
|
4 |
32 |
28 |
45 |
1 |
4 |
|
5 |
27 |
25 |
65 |
2 |
2 |
|
6 |
34 |
38 |
34 |
0 |
6 |
|
7 |
19 |
22 |
54 |
6 |
0 |
|
8 |
22 |
28 |
65 |
6 |
0 |
|
9 |
25 |
30 |
35 |
4 |
3 |
|
10 |
34 |
37 |
24 |
0 |
6 |
|
11 |
30 |
35 |
19 |
0 |
6 |
|
12 |
27 |
30 |
24 |
1 |
5 |
|
13 |
29 |
25 |
23 |
0 |
5 |
|
14 |
34 |
30 |
32 |
0 |
6 |
|
15 |
19 |
24 |
54 |
5 |
0 |
|
16 |
25 |
24 |
36 |
4 |
3 |
|
17 |
28 |
25 |
52 |
3 |
3 |
|
18 |
19 |
25 |
65 |
4 |
0 |
|
19 |
25 |
30 |
34 |
2 |
3 |
|
20 |
30 |
28 |
54 |
1 |
5 |
|
21 |
31 |
29 |
65 |
1 |
5 |
|
22 |
16 |
15 |
35 |
7 |
0 |
|
23 |
19 |
20 |
23 |
6 |
0 |
|
24 |
26 |
25 |
56 |
3 |
2 |
|
25 |
34 |
28 |
45 |
0 |
6 |
|
26 |
33 |
39 |
65 |
0 |
4 |
|
27 |
29 |
37 |
34 |
1 |
4 |
|
28 |
32 |
35 |
32 |
0 |
6 |
|
29 |
22 |
27 |
54 |
5 |
0 |
|
30 |
27 |
30 |
36 |
3 |
2 |
|
31 |
24 |
22 |
52 |
4 |
1 |
To perform Multiple regression in SPSS
Steps : Analyse ---Regression---Linear---Dependent(Y)---Independent(X1,X2,X3,X4)---method(stepwise)---Ok ---Statistics(tick estimates,model fit,descriptive)--- Save(tick unstandarised predicted and unstandardised residual)---Ok
Descriptive Statistics |
|||
Mean |
Std. Deviation |
N |
|
Y |
26.84 |
5.139 |
31 |
X1 |
28.45 |
5.501 |
31 |
X2 |
42.74 |
14.944 |
31 |
X3 |
2.45 |
2.234 |
31 |
X4 |
3.13 |
2.187 |
31 |
Model Summaryd |
||||||||||
Model |
R |
R Square |
Adjusted R Square |
Std. Error of the Estimate |
Change Statistics |
|||||
R Square Change |
F Change |
df1 |
df2 |
Sig. F Change |
||||||
1 |
.931a |
.868 |
.863 |
1.902 |
.868 |
190.048 |
1 |
29 |
.000 |
|
2 |
.944b |
.890 |
.882 |
1.762 |
.023 |
5.791 |
1 |
28 |
.023 |
|
3 |
.956c |
.914 |
.904 |
1.589 |
.024 |
7.408 |
1 |
27 |
.011 |
ANOVAa |
||||||
Model |
Sum of Squares |
df |
Mean Square |
F |
Sig. |
|
1 |
Regression |
687.314 |
1 |
687.314 |
190.048 |
.000b |
Residual |
104.880 |
29 |
3.617 |
|||
Total |
792.194 |
30 |
||||
2 |
Regression |
705.289 |
2 |
352.645 |
113.620 |
.000c |
Residual |
86.904 |
28 |
3.104 |
|||
Total |
792.194 |
30 |
||||
3 |
Regression |
723.999 |
3 |
241.333 |
95.550 |
.000d |
Residual |
68.195 |
27 |
2.526 |
|||
Total |
792.194 |
30 |
from the above anova table all the model 1,2,3 are significant to explain change in dependent variable Y i.e. BMI.
Coefficientsa |
||||||||||
Model |
Unstandardized Coefficients |
Standardized Coefficients |
t |
Sig. |
||||||
B |
Std. Error |
Beta |
||||||||
1 |
(Constant) |
32.092 |
.512 |
62.711 |
.000 |
|||||
X3 |
-2.143 |
.155 |
-.931 |
-13.786 |
.000 |
|||||
2 |
(Constant) |
27.810 |
1.841 |
15.103 |
.000 |
|||||
X3 |
-1.430 |
.329 |
-.622 |
-4.340 |
.000 |
|||||
X4 |
.810 |
.336 |
.345 |
2.407 |
.023 |
|||||
3 |
(Constant) |
21.902 |
2.733 |
8.013 |
.000 |
|||||
X3 |
-.977 |
.341 |
-.425 |
-2.868 |
.008 |
|||||
X4 |
1.425 |
.378 |
.606 |
3.765 |
.001 |
|||||
X2 |
.067 |
.025 |
.195 |
2.722 |
.011 |
Our fitted Model :
Y= 21.902+0.067*X2-0.977*X3+1.425*X4
where,
X2=Age
X3=Weekly Exercise
X4=Number of times eating outside.
so , from the above regression analysis we have seen that only Independent variable X1=Average parents BMI
does not explain variability in Dependent variable.