In: Statistics and Probability
Test a model that tries to explain differences in BMI based on parents' average BMI, a person's age, number of weekly hours of exercise, and the number of times a person eats outside.
Which independent variable (IV) does not explain variability in a person's BMI? Explain.
| Observation | BMI | Average parents' BMI | Age | Weekly Exercise | Number of times eating outside | 
| 1 | 24 | 28 | 34 | 4 | 3 | 
| 2 | 26 | 33 | 23 | 3 | 4 | 
| 3 | 30 | 30 | 56 | 0 | 3 | 
| 4 | 32 | 28 | 45 | 1 | 4 | 
| 5 | 27 | 25 | 65 | 2 | 2 | 
| 6 | 34 | 38 | 34 | 0 | 6 | 
| 7 | 19 | 22 | 54 | 6 | 0 | 
| 8 | 22 | 28 | 65 | 6 | 0 | 
| 9 | 25 | 30 | 35 | 4 | 3 | 
| 10 | 34 | 37 | 24 | 0 | 6 | 
| 11 | 30 | 35 | 19 | 0 | 6 | 
| 12 | 27 | 30 | 24 | 1 | 5 | 
| 13 | 29 | 25 | 23 | 0 | 5 | 
| 14 | 34 | 30 | 32 | 0 | 6 | 
| 15 | 19 | 24 | 54 | 5 | 0 | 
| 16 | 25 | 24 | 36 | 4 | 3 | 
| 17 | 28 | 25 | 52 | 3 | 3 | 
| 18 | 19 | 25 | 65 | 4 | 0 | 
| 19 | 25 | 30 | 34 | 2 | 3 | 
| 20 | 30 | 28 | 54 | 1 | 5 | 
| 21 | 31 | 29 | 65 | 1 | 5 | 
| 22 | 16 | 15 | 35 | 7 | 0 | 
| 23 | 19 | 20 | 23 | 6 | 0 | 
| 24 | 26 | 25 | 56 | 3 | 2 | 
| 25 | 34 | 28 | 45 | 0 | 6 | 
| 26 | 33 | 39 | 65 | 0 | 4 | 
| 27 | 29 | 37 | 34 | 1 | 4 | 
| 28 | 32 | 35 | 32 | 0 | 6 | 
| 29 | 22 | 27 | 54 | 5 | 0 | 
| 30 | 27 | 30 | 36 | 3 | 2 | 
| 31 | 24 | 22 | 52 | 4 | 1 | 
Solution:
Here our Dependent variable(Y) = BMI
And Independent Variables :
X1=Average parents BMI
X2=Age
X3=Weekly Exercise
X4=Number of times eating outside.
Here , we will perform Multiple Regression in SPSS.
Our Entered data :
| 
 Case Summariesa  | 
||||||
| 
 Observation  | 
 Y  | 
 X1  | 
 X2  | 
 X3  | 
 X4  | 
|
| 
 1  | 
 24  | 
 28  | 
 34  | 
 4  | 
 3  | 
|
| 
 2  | 
 26  | 
 33  | 
 23  | 
 3  | 
 4  | 
|
| 
 3  | 
 30  | 
 30  | 
 56  | 
 0  | 
 3  | 
|
| 
 4  | 
 32  | 
 28  | 
 45  | 
 1  | 
 4  | 
|
| 
 5  | 
 27  | 
 25  | 
 65  | 
 2  | 
 2  | 
|
| 
 6  | 
 34  | 
 38  | 
 34  | 
 0  | 
 6  | 
|
| 
 7  | 
 19  | 
 22  | 
 54  | 
 6  | 
 0  | 
|
| 
 8  | 
 22  | 
 28  | 
 65  | 
 6  | 
 0  | 
|
| 
 9  | 
 25  | 
 30  | 
 35  | 
 4  | 
 3  | 
|
| 
 10  | 
 34  | 
 37  | 
 24  | 
 0  | 
 6  | 
|
| 
 11  | 
 30  | 
 35  | 
 19  | 
 0  | 
 6  | 
|
| 
 12  | 
 27  | 
 30  | 
 24  | 
 1  | 
 5  | 
|
| 
 13  | 
 29  | 
 25  | 
 23  | 
 0  | 
 5  | 
|
| 
 14  | 
 34  | 
 30  | 
 32  | 
 0  | 
 6  | 
|
| 
 15  | 
 19  | 
 24  | 
 54  | 
 5  | 
 0  | 
|
| 
 16  | 
 25  | 
 24  | 
 36  | 
 4  | 
 3  | 
|
| 
 17  | 
 28  | 
 25  | 
 52  | 
 3  | 
 3  | 
|
| 
 18  | 
 19  | 
 25  | 
 65  | 
 4  | 
 0  | 
|
| 
 19  | 
 25  | 
 30  | 
 34  | 
 2  | 
 3  | 
|
| 
 20  | 
 30  | 
 28  | 
 54  | 
 1  | 
 5  | 
|
| 
 21  | 
 31  | 
 29  | 
 65  | 
 1  | 
 5  | 
|
| 
 22  | 
 16  | 
 15  | 
 35  | 
 7  | 
 0  | 
|
| 
 23  | 
 19  | 
 20  | 
 23  | 
 6  | 
 0  | 
|
| 
 24  | 
 26  | 
 25  | 
 56  | 
 3  | 
 2  | 
|
| 
 25  | 
 34  | 
 28  | 
 45  | 
 0  | 
 6  | 
|
| 
 26  | 
 33  | 
 39  | 
 65  | 
 0  | 
 4  | 
|
| 
 27  | 
 29  | 
 37  | 
 34  | 
 1  | 
 4  | 
|
| 
 28  | 
 32  | 
 35  | 
 32  | 
 0  | 
 6  | 
|
| 
 29  | 
 22  | 
 27  | 
 54  | 
 5  | 
 0  | 
|
| 
 30  | 
 27  | 
 30  | 
 36  | 
 3  | 
 2  | 
|
| 
 31  | 
 24  | 
 22  | 
 52  | 
 4  | 
 1  | 
|
To perform Multiple regression in SPSS
Steps : Analyse ---Regression---Linear---Dependent(Y)---Independent(X1,X2,X3,X4)---method(stepwise)---Ok ---Statistics(tick estimates,model fit,descriptive)--- Save(tick unstandarised predicted and unstandardised residual)---Ok
| 
 Descriptive Statistics  | 
|||
| 
 Mean  | 
 Std. Deviation  | 
 N  | 
|
| 
 Y  | 
 26.84  | 
 5.139  | 
 31  | 
| 
 X1  | 
 28.45  | 
 5.501  | 
 31  | 
| 
 X2  | 
 42.74  | 
 14.944  | 
 31  | 
| 
 X3  | 
 2.45  | 
 2.234  | 
 31  | 
| 
 X4  | 
 3.13  | 
 2.187  | 
 31  | 
| 
 Model Summaryd  | 
||||||||||
| 
 Model  | 
 R  | 
 R Square  | 
 Adjusted R Square  | 
 Std. Error of the Estimate  | 
 Change Statistics  | 
|||||
| 
 R Square Change  | 
 F Change  | 
 df1  | 
 df2  | 
 Sig. F Change  | 
||||||
| 
 1  | 
 .931a  | 
 .868  | 
 .863  | 
 1.902  | 
 .868  | 
 190.048  | 
 1  | 
 29  | 
 .000  | 
|
| 
 2  | 
 .944b  | 
 .890  | 
 .882  | 
 1.762  | 
 .023  | 
 5.791  | 
 1  | 
 28  | 
 .023  | 
|
| 
 3  | 
 .956c  | 
 .914  | 
 .904  | 
 1.589  | 
 .024  | 
 7.408  | 
 1  | 
 27  | 
 .011  | 
|
| 
 ANOVAa  | 
||||||
| 
 Model  | 
 Sum of Squares  | 
 df  | 
 Mean Square  | 
 F  | 
 Sig.  | 
|
| 
 1  | 
 Regression  | 
 687.314  | 
 1  | 
 687.314  | 
 190.048  | 
 .000b  | 
| 
 Residual  | 
 104.880  | 
 29  | 
 3.617  | 
|||
| 
 Total  | 
 792.194  | 
 30  | 
||||
| 
 2  | 
 Regression  | 
 705.289  | 
 2  | 
 352.645  | 
 113.620  | 
 .000c  | 
| 
 Residual  | 
 86.904  | 
 28  | 
 3.104  | 
|||
| 
 Total  | 
 792.194  | 
 30  | 
||||
| 
 3  | 
 Regression  | 
 723.999  | 
 3  | 
 241.333  | 
 95.550  | 
 .000d  | 
| 
 Residual  | 
 68.195  | 
 27  | 
 2.526  | 
|||
| 
 Total  | 
 792.194  | 
 30  | 
||||
from the above anova table all the model 1,2,3 are significant to explain change in dependent variable Y i.e. BMI.
| 
 Coefficientsa  | 
||||||||||
| 
 Model  | 
 Unstandardized Coefficients  | 
 Standardized Coefficients  | 
 t  | 
 Sig.  | 
||||||
| 
 B  | 
 Std. Error  | 
 Beta  | 
||||||||
| 
 1  | 
 (Constant)  | 
 32.092  | 
 .512  | 
 62.711  | 
 .000  | 
|||||
| 
 X3  | 
 -2.143  | 
 .155  | 
 -.931  | 
 -13.786  | 
 .000  | 
|||||
| 
 2  | 
 (Constant)  | 
 27.810  | 
 1.841  | 
 15.103  | 
 .000  | 
|||||
| 
 X3  | 
 -1.430  | 
 .329  | 
 -.622  | 
 -4.340  | 
 .000  | 
|||||
| 
 X4  | 
 .810  | 
 .336  | 
 .345  | 
 2.407  | 
 .023  | 
|||||
| 
 3  | 
 (Constant)  | 
 21.902  | 
 2.733  | 
 8.013  | 
 .000  | 
|||||
| 
 X3  | 
 -.977  | 
 .341  | 
 -.425  | 
 -2.868  | 
 .008  | 
|||||
| 
 X4  | 
 1.425  | 
 .378  | 
 .606  | 
 3.765  | 
 .001  | 
|||||
| 
 X2  | 
 .067  | 
 .025  | 
 .195  | 
 2.722  | 
 .011  | 
|||||
Our fitted Model :
Y= 21.902+0.067*X2-0.977*X3+1.425*X4
where,
X2=Age
X3=Weekly Exercise
X4=Number of times eating outside.
so , from the above regression analysis we have seen that only Independent variable X1=Average parents BMI
does not explain variability in Dependent variable.