Question

In: Statistics and Probability

A comparison is made between two bus lines to determine if arrival times of their regular...

A comparison is made between two bus lines to determine if arrival times of their regular buses from Denver to Durango are off schedule by the same amount of time. For 51 randomly selected runs, bus line A was observed to be off schedule an average time of 53 minutes, with standard deviation 19 minutes. For 60 randomly selected runs, bus line B was observed to be off schedule an average of 62 minutes, with standard deviation 15 minutes. Do the data indicate a significant difference in average off-schedule times? Use a 5% level of significance.

Solutions

Expert Solution


The test hypothesis is

This is a two-sided test because the alternative hypothesis is formulated to detect differences from the hypothesized difference in mean values on either side.
Now, the value of test static can be found out by following formula:

Degrees of freedom on the t-test statistic are n1 + n2 - 2 = 51 + 60 - 2 = 109
For . Since , we reject the null hypothesis H0 in favor of the alternative hypothesis .
Please hit thumbs up if the answer helped you.


Related Solutions

A comparison is made between two bus lines to determine if arrival times of their regular...
A comparison is made between two bus lines to determine if arrival times of their regular buses from Denver to Durango are off schedule by the same amount of time. For 51 randomly selected runs, bus line A was observed to be off schedule an average time of 53 minutes, with standard deviation 17 minutes. For 61 randomly selected runs, bus line B was observed to be off schedule an average of 62 minutes, with standard deviation 11 minutes. Do...
A comparison is made between two bus lines to determine if arrival times of their regular...
A comparison is made between two bus lines to determine if arrival times of their regular buses from Denver to Durango are off schedule by the same amount of time. For 51 randomly selected runs, bus line A was observed to be off schedule an average time of 53 minutes, with standard deviation 19 minutes. For 60 randomly selected runs, bus line B was observed to be off schedule an average of 61 minutes, with standard deviation 13 minutes. Do...
A comparison is made between two bus lines to determine if arrival times of their regular...
A comparison is made between two bus lines to determine if arrival times of their regular buses from Denver to Durango are off schedule by the same amount of time. For 46randomly selected runs, bus line A was observed to be off schedule an average time of 53 minutes, with standard deviation 15 minutes. For 61 randomly selected runs, bus line B was observed to be off schedule an average of 62 minutes, with standard deviation 13 minutes. Do the...
A comparison is made between two bus lines to determine if arrival times of their regular...
A comparison is made between two bus lines to determine if arrival times of their regular buses from Denver to Durango are off schedule by the same amount of time. For 51 randomly selected runs, bus line A was observed to be off schedule an average time of 53 minutes, with standard deviation 17 minutes. For 61 randomly selected runs, bus line B was observed to be off schedule an average of 60 minutes, with standard deviation 15 minutes. Do...
Lisa is at a bus stop. The times between successive bus arrivals are independent and identically...
Lisa is at a bus stop. The times between successive bus arrivals are independent and identically distributed exponential random variables with mean 3 minutes. While lisa is waiting, Mindy calls to say she will arrive in exactly 3 minutes. Lisa will wait for Mindy and they will ride a bus together. Calculate the probability that Lisa will miss the first and both Lisa and Mindy will catch the second bus.
The waiting times between a subway departure schedule and the arrival of a passenger are uniformly...
The waiting times between a subway departure schedule and the arrival of a passenger are uniformly distributed between 0 and 7 minutes. Find the probability that a randomly selected passenger has a waiting time greater than 3.25 minutes. Find the probability that a randomly selected passenger has a waiting time greater than 3.25 minutes.
The waiting times between a subway departure schedule and the arrival of a passenger are uniformly...
The waiting times between a subway departure schedule and the arrival of a passenger are uniformly distributed between 0 and 8 minutes. Find the probability that a randomly selected passenger has a waiting time greater  than 2.25 minutes.
The waiting times between a subway departure schedule and the arrival of a passenger are uniformly...
The waiting times between a subway departure schedule and the arrival of a passenger are uniformly distributed between 0 and 9 minutes. Find the probability that a randomly selected passenger has a waiting time less than 0.75 minutes. Find the probability that a randomly selected passenger has a waiting time less than 0.75 minutes. (Simplify your answer. Round to three decimal places as​ needed.)
The waiting times between a subway departure schedule and the arrival of a passenger are uniformly...
The waiting times between a subway departure schedule and the arrival of a passenger are uniformly distributed between 0 0 and 8 8 minutes. Find the probability that a randomly selected passenger has a waiting time greater than greater than 2.25 2.25 minutes. Find the probability that a randomly selected passenger has a waiting time greater than greater than 2.25 2.25 minutes.
The waiting times between a subway departure schedule and the arrival of a passenger are uniformly...
The waiting times between a subway departure schedule and the arrival of a passenger are uniformly distributed between 00 and 88 minutes. Find the probability that a randomly selected passenger has a waiting time greater than greater than 1.251.25 minutes.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT