In: Statistics and Probability
Based on the data shown below, calculate the correlation
coefficient (rounded to three decimal places)
| x | y | 
|---|---|
| 2 | 1.6 | 
| 3 | 2.67 | 
| 4 | 3.84 | 
| 5 | 3.71 | 
| 6 | 0.48 | 
| 7 | 1.75 | 
| 8 | 3.42 | 
| 9 | 0.89 | 
| 10 | 1.96 | 
| 11 | 3.13 | 
| 12 | 0.1 | 
Solution:
| X | Y | XY | X^2 | Y^2 | 
| 2 | 1.6 | 3.2 | 4 | 2.56 | 
| 3 | 2.67 | 8.01 | 9 | 7.1289 | 
| 4 | 3.84 | 15.36 | 16 | 14.7456 | 
| 5 | 3.71 | 18.55 | 25 | 13.7641 | 
| 6 | 0.48 | 2.88 | 36 | 0.2304 | 
| 7 | 1.75 | 12.25 | 49 | 3.0625 | 
| 8 | 3.42 | 27.36 | 64 | 11.6964 | 
| 9 | 0.89 | 8.01 | 81 | 0.7921 | 
| 10 | 1.96 | 19.6 | 100 | 3.8416 | 
| 11 | 3.13 | 34.43 | 121 | 9.7969 | 
| 12 | 0.1 | 1.2 | 144 | 0.01 | 
| n | 11 | 
| sum(XY) | 150.85 | 
| sum(X) | 77.00 | 
| sum(Y) | 23.55 | 
| sum(X^2) | 649.00 | 
| sum(Y^2) | 67.63 | 
| Numerator | -154.00 | 
| Denominator | 478.61 | 
| r | -0.3218 | 
| r square | 0.1035 | 
| Xbar(mean) | 7.0000 | 
| Ybar(mean) | 2.1409 | 
| SD(X) | 1.7078 | 
| SD(Y) | 1.1966 | 
| b | -0.1273 | 
| a | 3.0318 | 

r = -0.322