In: Statistics and Probability
Based on the data shown below, calculate the regression line
(each value to two decimal places)
y = x +
x | y |
---|---|
4 | 13.72 |
5 | 18.65 |
6 | 17.38 |
7 | 17.41 |
8 | 20.44 |
9 | 21.97 |
10 | 21.5 |
11 | 20.63 |
12 | 25.16 |
13 | 22.29 |
14 | 24.82 |
15 | 24.65 |
Solution:
Regression equation can be written as
Y = a + b*x
Here a is intercept of regression line
Y is dependent Variable
X is independent variable
b is the slope of regression line
X |
Y |
X^2 |
Y^2 |
XY |
4 |
13.72 |
16 |
188.2384 |
54.88 |
5 |
18.65 |
25 |
347.8225 |
93.25 |
6 |
17.38 |
36 |
302.0644 |
104.28 |
7 |
17.41 |
49 |
303.1081 |
121.87 |
8 |
20.44 |
64 |
417.7936 |
163.52 |
9 |
21.97 |
81 |
482.6809 |
197.73 |
10 |
21.5 |
100 |
462.25 |
215 |
11 |
20.63 |
121 |
425.5969 |
226.93 |
12 |
25.16 |
144 |
633.0256 |
301.92 |
13 |
22.29 |
169 |
496.8441 |
289.77 |
14 |
24.82 |
196 |
616.0324 |
347.48 |
15 |
24.65 |
225 |
607.6225 |
369.75 |
114 |
248.62 |
1226 |
5283.0794 |
2486.38 |
Slope of regression line can be calculated as
Slope = ((n*Xi*Yi)
- (Xi
*
Yi))/((n*Xi^2)
- (Xi)^2))
= ((12*2486.38) - (114*248.62))/((12*1226)-(114)^2)) = 1493.88/1716
= 0.87
Intercept of regression line can be calculated as
Intercept = (Yi
- Slope
Xi)/n = (248.62 - 0.87*114)/12 = 12.45
So regression equation is
Y = 12.45 + 0.87*X