In: Statistics and Probability
Based on the data shown below, calculate the regression line
(each value to two decimal places)
y = x +
| x | y | 
|---|---|
| 2 | 39.27 | 
| 3 | 37.18 | 
| 4 | 31.79 | 
| 5 | 30.1 | 
| 6 | 27.41 | 
| 7 | 25.82 | 
| 8 | 24.23 | 
| 9 | 19.04 | 
| 10 | 17.15 | 
| 11 | 16.36 | 
| 12 | 15.17 | 
| 13 | 10.78 | 
| 14 | 7.69 | 
| 15 | 4.2 | 
Solution:
| X | Y | XY | X^2 | Y^2 | 
| 2 | 39.27 | 78.54 | 4 | 1542.1329 | 
| 3 | 37.18 | 111.54 | 9 | 1382.3524 | 
| 4 | 31.79 | 127.16 | 16 | 1010.6041 | 
| 5 | 30.1 | 150.5 | 25 | 906.01 | 
| 6 | 27.41 | 164.46 | 36 | 751.3081 | 
| 7 | 25.82 | 180.74 | 49 | 666.6724 | 
| 8 | 24.23 | 193.84 | 64 | 587.0929 | 
| 9 | 19.04 | 171.36 | 81 | 362.5216 | 
| 10 | 17.15 | 171.5 | 100 | 294.1225 | 
| 11 | 16.36 | 179.96 | 121 | 267.6496 | 
| 12 | 15.17 | 182.04 | 144 | 230.1289 | 
| 13 | 10.78 | 140.14 | 169 | 116.2084 | 
| 14 | 7.69 | 107.66 | 196 | 59.1361 | 
| 15 | 4.2 | 63 | 225 | 17.64 | 
| n | 13 | 
| sum(XY) | 1959.44 | 
| sum(X) | 104.00 | 
| sum(Y) | 301.99 | 
| sum(X^2) | 1014.00 | 
| sum(Y^2) | 8175.94 | 
| b | -2.5081 | 
| a | 43.2951 | 
Now ,
Slope of the regression line is

  
b = -2.51
Now , y intercept of the line is

  
a = 43.30
The equation of the regression line is
= a + bx
i.e. 
 = 43.30 +(-2.51)X