In: Statistics and Probability
Based on the data shown below, calculate the regression line
(each value to two decimal places)
y = x +
x | y |
---|---|
2 | 39.27 |
3 | 37.18 |
4 | 31.79 |
5 | 30.1 |
6 | 27.41 |
7 | 25.82 |
8 | 24.23 |
9 | 19.04 |
10 | 17.15 |
11 | 16.36 |
12 | 15.17 |
13 | 10.78 |
14 | 7.69 |
15 | 4.2 |
Solution:
X | Y | XY | X^2 | Y^2 |
2 | 39.27 | 78.54 | 4 | 1542.1329 |
3 | 37.18 | 111.54 | 9 | 1382.3524 |
4 | 31.79 | 127.16 | 16 | 1010.6041 |
5 | 30.1 | 150.5 | 25 | 906.01 |
6 | 27.41 | 164.46 | 36 | 751.3081 |
7 | 25.82 | 180.74 | 49 | 666.6724 |
8 | 24.23 | 193.84 | 64 | 587.0929 |
9 | 19.04 | 171.36 | 81 | 362.5216 |
10 | 17.15 | 171.5 | 100 | 294.1225 |
11 | 16.36 | 179.96 | 121 | 267.6496 |
12 | 15.17 | 182.04 | 144 | 230.1289 |
13 | 10.78 | 140.14 | 169 | 116.2084 |
14 | 7.69 | 107.66 | 196 | 59.1361 |
15 | 4.2 | 63 | 225 | 17.64 |
n | 13 |
sum(XY) | 1959.44 |
sum(X) | 104.00 |
sum(Y) | 301.99 |
sum(X^2) | 1014.00 |
sum(Y^2) | 8175.94 |
b | -2.5081 |
a | 43.2951 |
Now ,
Slope of the regression line is
b = -2.51
Now , y intercept of the line is
a = 43.30
The equation of the regression line is
= a + bx
i.e. = 43.30 +(-2.51)X