Question

In: Mechanical Engineering

A simple steam power cycle uses solar energy for the heat input. Water in the cycle...

A simple steam power cycle uses solar energy for the heat input. Water in the cycle enters the pump as a saturated liquid at 40°C, and is pumped to 2 bar. It then evaporates in the boiler at this pressure, and enters the turbine as saturated vapour. At the turbine exhaust the conditions are 40°C and 10% moisture. The flow rate is 150 kg/h. Determine (a) the turbine isentropic efficiency, (b) the net work output (c) the cycle efficiency, and (d) the area of solar collector needed if the collectors pick up 0.50 kW/m 2

Solutions

Expert Solution


Related Solutions

Consider a steam power plant operating on a simple ideal Rankine cycle in which the steam...
Consider a steam power plant operating on a simple ideal Rankine cycle in which the steam enters the turbine at 3 MPa and 350C and is condensed in the condenser at 75 kPa. Determine the thermal efficiency of this cycle and sketch an appropriately labeled T-s diagram. Also compare this thermal efficiency to that a Carnot heat engine operating between these same two limits. The change in enthalpy across the pump = work done by the pump: h2-h1= v1(P2– P1)
A steam power plant operates on the simple ideal rankine cycle. the steam enters the turbine...
A steam power plant operates on the simple ideal rankine cycle. the steam enters the turbine at 4 MPa and 500 C and leaves it at 50 kPa and 150 C. the water leaves the condenser as a saturated liquid and is subsequently displaced to the boiler by means of a pump at a temperature of 85 C, which is the isentrophic efficiency of the turbine?
Consider a combined gas-steam power cycle. The topping cycle is a simple Brayton cycle that has...
Consider a combined gas-steam power cycle. The topping cycle is a simple Brayton cycle that has a pressure ratio of 7. Air enters the compressor at 15 ºC at a rate of 10 kg/s and the gas turbine at 950 ºC. The bottoming cycle is a reheat Rankine cycle between the pressure limits of 6 MPa and 10 kPa. Steam is heated in a heat exchanger at a rate of 1.15 kg/s by the exhaust gases leaving the gas turbine,...
Consider a combined gas-steam power cycle. The topping cycle is a simple Brayton cycle that has...
Consider a combined gas-steam power cycle. The topping cycle is a simple Brayton cycle that has a pressure ratio of 7. Air enters the compressor at 15 ºC at a rate of 10 kg/s and the gas turbine at 950 ºC. The bottoming cycle is a reheat Rankine cycle between the pressure limits of 6 MPa and 10 kPa. Steam is heated in a heat exchanger at a rate of 1.15 kg/s by the exhaust gases leaving the gas turbine,...
The net power of a steam power plant operating according to the simple ideal Rankine cycle...
The net power of a steam power plant operating according to the simple ideal Rankine cycle is 30.5 MW. Water vapor enters the turbine at 7 MPa pressure and 500 ° C, expands to 10 kPa condenser pressure in the turbine. The steam is condensed in the condenser by cooling it with water from a lake. The flow rate of the lake water is 1950 kg / h. Get the pump and turbine adiabatic efficiency of 87%. Show the cycle...
Consider a steam power plant operating on the simple ideal Rankine cycle. Steam enters the turbine...
Consider a steam power plant operating on the simple ideal Rankine cycle. Steam enters the turbine at 15 MPa and 600°C. The steam condenses in the condenser at 10 kPa. Use the EES software to study the effects of the following cases on the cycle performance and to sketch the T-s diagram for each case: Plot the variation of the cycle thermal efficiency with the turbine isentropic efficiency. Take the isentropic efficiency of the turbine in the range 70% to...
Consider a steam power plant operating on the simple ideal Rankine cycle. Steam enters the turbine...
Consider a steam power plant operating on the simple ideal Rankine cycle. Steam enters the turbine at 15 MPa and 600°C. The steam condenses in the condenser at 10 kPa. Use the EES software to study the effects of the following cases on the cycle performance and to sketch the T-s diagram for each case: #Plot the variation of the cycle thermal efficiency with the turbine isentropic efficiency. Take the isentropic efficiency of the turbine in the range 70% to...
Consider a simple ideal Rankine cycle which uses water as the working fluid. The net power...
Consider a simple ideal Rankine cycle which uses water as the working fluid. The net power of power plant is 220-MW. At the turbine inlet, steam is at 9 MPa and 560°C. The condenser pressure is 20 kPa. Determine the following values.   The temperature at the pump inlet. °CThe specific enthalpy at the pump inlet. kJ/kgThe specific volume at the pump inlet. m3/kgThe pump work. kJ/kgThe temperature at pump exit. °CThe specific entropy at turbine inlet. kJ/kg·KThe quality of steam...
In a power plant based on a simple Rankine cycle, steam enters the turbine at 15...
In a power plant based on a simple Rankine cycle, steam enters the turbine at 15 MPa and 900°C. The condenser pressure is 5 kPa. The turbine operates adiabatically and has an isentropic efficiency of 85%, and the pump also operates adiabatically and has an isentropic efficiency of 80%. Determine the work required to pump the water to the boiler in kJ/kg of water flowing, and the enthalpy of the water leaving the pump.
A combined cycle power system uses a simple gas-turbine Brayton cycle in conjunction with a simple...
A combined cycle power system uses a simple gas-turbine Brayton cycle in conjunction with a simple Rankine cycle to produce a total power of 100 MW. In such configuration, the exhaust stream from the gas turbine is used as the heat source for the steam power cycle in a heat exchanger as shown in the figure. The following data are known for the gas-turbine cycle. Atmospheric air enters the compressor at 100 kPa and 20oC, the compressor pressure ratio is...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT