Question

In: Statistics and Probability

Consider the following hypothesis test. H0: μ ≥ 40 Ha: μ < 40 A sample of...

Consider the following hypothesis test.

H0: μ ≥ 40

Ha: μ < 40

A sample of 36 is used. Identify the p-value and state your conclusion for each of the following sample results. Use

α = 0.01.

(a)

x = 39 and s = 5.3

*Find the value of the test statistic. (Round your answer to three decimal places.)

* Find the p-value. (Round your answer to four decimal places.)

p-value =

*State your conclusion:

Reject H0. There is sufficient evidence to conclude that μ < 40.

Do not reject H0. There is sufficient evidence to conclude that μ < 40.    

Do not reject H0. There is insufficient evidence to conclude that μ < 40.

Reject H0. There is insufficient evidence to conclude that μ < 40.

Solutions

Expert Solution

The provided sample mean is 39 and the sample standard deviation is 5.3, and the sample size is 36.

(1) Null and Alternative Hypotheses

The following null and alternative hypotheses need to be tested:

Ho: μ ≥ 40

Ha: μ < 40

This corresponds to a left-tailed test, for which a t-test for one mean, with unknown population standard deviation will be used.

(2) Rejection Region

Based on the information provided, the significance level is α=0.01, and the critical value for a left-tailed test is t_c = -2.438

(3) Test Statistics

The t-statistic is computed as follows:

(4) Decision about the null hypothesis

Since it is observed that t = -1.132 > t_c = -2.438 , it is then concluded that the null hypothesis is not rejected.

Using the P-value approach: The p-value is p = 0.1326 , and since p = 0.1326 > 0.01 , it is concluded that the null hypothesis is not rejected.

(5) Conclusion

It is concluded that the null hypothesis Ho is not rejected. Therefore, there is not enough evidence to claim that the population mean μ is less than 40, at the 0.01 significance level.

Do not reject H0. There is insufficient evidence to conclude that μ < 40.


Related Solutions

Consider the following hypothesis test. H0: μ ≤ 50 Ha: μ > 50 A sample of...
Consider the following hypothesis test. H0: μ ≤ 50 Ha: μ > 50 A sample of 60 is used and the population standard deviation is 8. Use the critical value approach to state your conclusion for each of the following sample results. Use α = 0.05. (Round your answers to two decimal places.) (a) x = 52.3 Find the value of the test statistic. = State the critical values for the rejection rule. (If the test is one-tailed, enter NONE...
Consider the following hypothesis test. H0: μ ≤ 25 Ha: μ > 25 A sample of...
Consider the following hypothesis test. H0: μ ≤ 25 Ha: μ > 25 A sample of 40 provided a sample mean of 26.1. The population standard deviation is 6. (a) Find the value of the test statistic. (Round your answer to two decimal places.) (b) Find the p-value. (Round your answer to four decimal places.) p-value = (c) At α = 0.01,state your conclusion. (d) State the critical values for the rejection rule. (Round your answer to two decimal places....
Consider the following hypothesis test. H0: μ ≤ 50 Ha: μ > 50 A sample of...
Consider the following hypothesis test. H0: μ ≤ 50 Ha: μ > 50 A sample of 60 is used and the population standard deviation is 8. Use the critical value approach to state your conclusion for each of the following sample results. Use α = 0.05. (Round your answers to two decimal places.) (a) x = 52.7 Find the value of the test statistic. State the critical values for the rejection rule. (If the test is one-tailed, enter NONE for...
Consider the following hypothesis test. H0: μ ≥ 35 Ha: μ < 35 A sample of...
Consider the following hypothesis test. H0: μ ≥ 35 Ha: μ < 35 A sample of 36 is used. Identify the p-value and state your conclusion for each of the following sample results. Use α = 0.01. (a) x = 34 and s = 5.2 Find the value of the test statistic. (Round your answer to three decimal places.) Find the p-value. (Round your answer to four decimal places.) *PLEASE GO INTO DETAIL WHEN EXPLAINING THIS STEP! How do you...
Consider the following hypothesis test. H0: μ = 15 Ha: μ ≠ 15 A sample of...
Consider the following hypothesis test. H0: μ = 15 Ha: μ ≠ 15 A sample of 50 provided a sample mean of 14.08. The population standard deviation is 3. A. Find the value of the test statistic. (Round your answer to two decimal places.) B. Find the p-value. (Round your answer to four decimal places.) C. State the critical values for the rejection rule. (Round your answers to two decimal places. If the test is one-tailed, enter NONE for the...
Consider the following hypothesis test. H0: μ ≥ 20 Ha: μ < 20 A sample of...
Consider the following hypothesis test. H0: μ ≥ 20 Ha: μ < 20 A sample of 50 provided a sample mean of 19.5. The population standard deviation is 2. (a) Find the value of the test statistic. (Round your answer to two decimal places.) _______ (b) Find the p-value. (Round your answer to four decimal places.) p-value = _______ (c) Using α = 0.05, state your conclusion. Reject H0. There is sufficient evidence to conclude that μ < 20. Reject...
Consider the following hypothesis test. H0: μ ≤ 12 Ha: μ > 12 A sample of...
Consider the following hypothesis test. H0: μ ≤ 12 Ha: μ > 12 A sample of 25 provided a sample mean x = 14 and a sample standard deviation s = 4.67. A. Compute the value of the test statistic. (Round your answer to three decimal places.) B. What is the rejection rule using the critical value? (If the test is one-tailed, enter NONE for the unused tail. Round your answer to three decimal places.) test statistic≤test statistic≥
Consider the following hypothesis test. H0: μ ≥ 50 Ha: μ < 50 A sample of...
Consider the following hypothesis test. H0: μ ≥ 50 Ha: μ < 50 A sample of 36 is used. Identify the p-value and state your conclusion for each of the following sample results. Use α = 0.01. A. x = 49 and s = 5.2 Find the value of the test statistic. (Round your answer to three decimal places.) Find the p-value. (Round your answer to four decimal places.) B. x = 48 and s = 4.6 Find the value...
Consider the following hypothesis test. H0: μ ≤ 25 Ha: μ > 25 A sample of...
Consider the following hypothesis test. H0: μ ≤ 25 Ha: μ > 25 A sample of 40 provided a sample mean of 26.6. The population standard deviation is 6. (a) Find the value of the test statistic. (Round your answer to two decimal places.) (b) Find the p-value. (Round your answer to four decimal places.) 1) p-value = (c) At  α = 0.01, state your conclusion. 1) Reject H0. There is sufficient evidence to conclude that μ > 25. 2) Reject...
Consider the following hypothesis test. H0: μ ≤ 25 Ha: μ > 25 A sample of...
Consider the following hypothesis test. H0: μ ≤ 25 Ha: μ > 25 A sample of 40 provided a sample mean of 26.6. The population standard deviation is 6. (a) Find the value of the test statistic. (Round your answer to two decimal places.) (b) Find the p-value. (Round your answer to four decimal places.) p-value = (c) At α = 0.01,state your conclusion. Chose one of the following. Reject H0. There is sufficient evidence to conclude that μ >...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT