Question

In: Chemistry

A 4.50 mL sample of a 0.100 M solution of an aromatic hydrocarbon dissolved in hexane...

A 4.50 mL sample of a 0.100 M solution of an aromatic hydrocarbon dissolved in hexane is excited with a flash of light. The aromatic compound emits 19.3 J of energy at an average wavelength of 379 nm. What percentage of the aromatic compound molecules emitted a photon? Please Help, Thanks

Solutions

Expert Solution

molarity of hydrocarbon = 0.100M

volume of sample = 4.50mL = 4.50/1000L

moles of hydrocarbon = 0.1004.50/1000

                                = 4.5010-4moles

no. of molecules of hydrocarbon = 4.5010-4 6.022*1023

                                               = 2.70991020 molecules                                                  (1)

wavelength of light = 379nm = 37910-9m

    using, E = hc/

                 = 6.62610-34 2.998108 / 37910-9

                       = 5.24110-19J

total amount of energy emitted = 19.3J

no. of photons emitted = 19.3 / 5.24110-19

                                 = 3.6821019photons

percentage of molecules emitted a photon = no. of photons / no. of molecules 100

                                                              = 3.6821019 / 2.70991020 100

                                                              = 13.59%

Regards.


Related Solutions

A25.0 mL sample of 0.100 M NaOH is titrated with a 0.100 M HNO3 solution. Calculate...
A25.0 mL sample of 0.100 M NaOH is titrated with a 0.100 M HNO3 solution. Calculate the pH after the addition of 0.0, 4.0, 8.0, 12.5, 20.0, 24.0, 24.5, 24.9, 25.0, 25.1, 26.0, 28.0, and 30.0 of the HNO3.
50.0 mL of a 0.100 -M HoAc solution is titrated with a 0.100 -M NaOH solution....
50.0 mL of a 0.100 -M HoAc solution is titrated with a 0.100 -M NaOH solution. Calculate the pH at each of the following points. Volume of NaOH added: 0, 5, 10, 25, 40 ,45 , 50 , 55 , 60 , 70 , 80 , 90 , 100
A 83.0 mL sample of 0.0500 M HNO3 is titrated with 0.100 M KOH solution. Calculate...
A 83.0 mL sample of 0.0500 M HNO3 is titrated with 0.100 M KOH solution. Calculate the pH after the following volumes of base have been added. (a) 11.2 mL pH = _________ (b) 39.8 mL pH = __________    (c) 41.5 mL pH = ___________ (d) 41.9 mL pH = ____________    (e) 79.3 mL pH = _____________
25.0 mL of a 0.100 M HCN solution is titrated with 0.100 M KOH. Ka of...
25.0 mL of a 0.100 M HCN solution is titrated with 0.100 M KOH. Ka of HCN=6.2 x 10^-10. a)What is the pH when 25mL of KOH is added (this is the equivalent point). b) what is the pH when 35 mL of KOH is added.
A 20.00 mL solution of 0.100 M HCOOH (formic) was titrated with 0.100 M KOH. The...
A 20.00 mL solution of 0.100 M HCOOH (formic) was titrated with 0.100 M KOH. The Ka for the weak acid formic is 1.40 x 10-5. a. Determine the pH for the formic prior to its titration with KOH. b. Determine the pH of this solution at the ½ neutralization point of the titration. c. Identify the conjugate acid-base pair species at the ½ neutralization point.
A 40.0 mL sample of 0.100 M HCl is titrated with 0.100 M NaOH. Calculate the...
A 40.0 mL sample of 0.100 M HCl is titrated with 0.100 M NaOH. Calculate the pH after the addition of each of the following volumes of NaOH: (a) 0.0 mL, (b) 10.0 mL, (c) 20.0 mL, (d) 40.0 mL, (e) 60.0 mL. A plot of the pH of the solution as a function of the volume of added titrant is known as a pH titration curve. Using the available data points, plot the pH titration curve for the above...
Suppose 20.0 mL of a 0.100 M NH3 solution is titrated with 0.100 M HI. Determine...
Suppose 20.0 mL of a 0.100 M NH3 solution is titrated with 0.100 M HI. Determine the pH of the solution after the addition of the following volumes of titrant. a. 5.00 mL b. 10.00 mL c. 15.00 mL d. 20.00 mL e. 25.00 mL
Suppose 20.0 mL of a 0.100 M NH3 solution is titrated with 0.100 M HI. Determine...
Suppose 20.0 mL of a 0.100 M NH3 solution is titrated with 0.100 M HI. Determine the pH of the solution after the addition of the following volumes of titrant. a. 5.00 mL b. 10.00 mL c. 15.00 mL d. 20.00 mL e. 25.00 mL
A 25.0 mL solution of 0.100 M CH3COOH is titrated with a 0.200 M KOH solution....
A 25.0 mL solution of 0.100 M CH3COOH is titrated with a 0.200 M KOH solution. Calculate the pH after the following additions of the KOH solution: (a) 0.0 mL, (b) 5.0 mL, (c) 10.0 mL, (d) 12.5 mL, (e) 15.0 mL. (25 points)
A 25.0 mL solution of 0.100 M CH3COOH is titrated with a 0.200 M KOH solution....
A 25.0 mL solution of 0.100 M CH3COOH is titrated with a 0.200 M KOH solution. Calculate the pH after the following additions of the KOH solution: (a) 0.0 mL, (b) 5.0 mL, (c) 10.0 mL, (d) 12.5 mL, (e) 15.0 mL. (25 points)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT