In: Statistics and Probability
Solution
Given that,
p = 0.59
1 - p = 1 - 0.59 = 0.41
n = 151
a) np 10 and n(1 - p) 10
151 * 0.59 = 89.09 10 and 151 * 0.41 = 61.91 10
The sampling distribution is approximately normal,
= p = 0.59
= [p( 1 - p ) / n] = [(0.59 * 0.41) / 151 ] = 0.040
b) P( > 0.645) = 1 - P( < 0.645 )
= 1 - P(( - ) / < (0.645 - 0.59) / 0.040)
= 1 - P(z < 1.375)
Using z table
= 1 - 0.9154
= 0.0846
c) P( 0.54 < < 0.66 )
= P[(0.54 - 0.59) / 0.040 < ( - ) / < (0.66 - 0.59) / 0.040 ]
= P(-1.25 < z < 1.75)
= P(z < 1.75) - P(z < -1.25)
Using z table,
= 0.9599 - 0.1056
= 0.8543