In: Statistics and Probability
.The following table displays the joint probability distribution of two discrete random variables X and Y.
-1 | 0 | 1 | 2 | |
1 | 0.2 | 0 | 0.16 | 0.12 |
0 | 0.3 | 0.12 | 0.1 | 0 |
(there are more than 4 parts, as per policy i am answering first 4 parts)
a.
P(x= | y=1)
= P(x=1,y=1)/P(y=1)
= (0.16) / (0.16+0.1) = 0.6154
b.
E(x | y=1)
= (sum of x*P(x,1))/P(y=1)
= (1*0.16 + 0*0.1)/(0.16+0.1)
= 0.6154
c.
var (x | y=1) = E(x^2 | y=1) - (E(x | y=1))^2
= (sum of (x^2)*P(x,1))/P(y=1) - (sum of x*P(x,1))/P(y=1)
= (1^2*0.16 + 0^2*0.1)/(0.16+0.1) - ((1*0.16 + 0*0.1)/(0.16+0.1))^2
= 0.6154 - (0.6154)^2
= 0.2367
d.
corr(x,y) = cov(x,y) / [ (E(x^2) - E(x)^2)^0.5 * (E(y^2) - E(y)^2)^0.5 ]
cov(x,y) = E(xy) - E(x)*E(y)
= sum of xy*P(x,y) - (sum of x*P(x,y))*(sum of y*P(x,y))
= (-1*0.2 + 0*0 + 1*0.16 + 2*0.13 + 0*0.3+0*0.12+0*0.1+0*0) - (1*0.2 + 1*0 + 1*0.16 + 1*0.13 + 0*0.3+0*0.12+0*0.1+0*0)*(-1*0.2 + 0*0 + 1*0.16 + 2*0.13 -1*0.3+0*0.12+1*0.1+2*0)
= 0.22 - ( 0.49 )*( 0.02 )
= 0.2102
(E(x^2) - E(x)^2) = (1*0.2 + 1*0 + 1*0.16 + 1*0.13 + 0*0.3+0*0.12+0*0.1+0*0) - (1*0.2 + 1*0 + 1*0.16 + 1*0.13 + 0*0.3+0*0.12+0*0.1+0*0)^2
= 0.2499
(E(y^2) - E(y)^2) =
= (1*0.2 + 0*0 + 1*0.16 + 4*0.13 + 1*0.3+0*0.12+1*0.1+4*0) - (-1*0.2 + 0*0 + 1*0.16 + 2*0.13 -1*0.3+0*0.12+1*0.1+2*0)^2
= 1.28 - 0.0004
= 1.2796
corr(x,y) = cov(x,y) / [ (E(x^2) - E(x)^2)^0.5 + (E(y^2) - E(y)^2)^0.5 ]
= 0.2102 / [(0.2499 )^0.5 * ( 1.2796 )^0.5]
= 0.3717
corr(x,y) = 0.3717
(please UPVOTE)