In: Statistics and Probability
X and Y are discrete random variables with joint distribution given below Y 1 Y 0 Y 1 X 1 0 1/4 0
X 0 1/4 1/4 1/4
(a) Determine the conditional expectation E Y|X 1 . (b) Determine the conditional expectation E X|Y y for each value of y. (c) Determine the expected value of X using conditional expectation results form part (b)
above. (d) Now obatin the marginal distribution of X and verify your answers to part (c).
Answer:-
Given that:-
X and Y are discete random variables with joint distribution
Y=-1 | Y=0 | Y=1 | Total | |
X=1 | 0 | 1/4 | 0 | 1/4 |
X=0 | 1/4 | 1/4 | 1/4 | 3/4 |
Total | 1/4 | 2/4 | 1/4 | 1 |
a) Determine condition Expectation E(y/x=1)
E(y/x=1)=
Condition probability distribution of y given x=1
Condition probability distribution of y/x=1
y | -1 | 0 | 1 | |
p(y/x=1) | 0 | 1 | 0 | 1 |
b)Detremine the condition expectation E(x/y=y) for each value or y
E(x/y=-1), E(x/y=0), E(x/y=1)
Y=-1 | Y=0 | Y=1 | Total | |
X=1 | 0 | 1/4 | 0 | 1/4 |
X=0 | 1/4 | 1/4 | 1/4 | 3/4 |
Total | 1/4 | 2/4 | 1/4 |
1 |
To find E(x/y=-1)
Condition prob.distribution of x/y=-1
Condition prob distribution of x/y=-1
x | 1 | 0 | |
p(x/y=-1) | 0 | 1 | 1 |
E(x/y=-1)=
E(x/y=-1)=0
To find E(x/y=0)
condition probability of x/y=0
condition prob distribution of x/y=0
x | 1 | 0 | |
p(x/y=0) | 1/2 | 1/2 | 1 |
E(x/y=0)=
To find E(x/y=1)
Condition probability of x/y=1
condition prob distribution or x/y=1
x | 1 | 0 | |
p(x/y=1) | 0 | 1 | 1 |
E(x/y=1)=
c)We know that from low of it created
expectation
E[E(x/y)]=E(x)
g(y)=E(x/y=y)
E[E(x/y)]=E(g(y))
=
E[E(x/y=y)]=E(x/y=-1).p(y=-1)+E(x/y=0)(y=0)+E(x/y=1).p(y=1)
E[E(x/y)]=
Therefore E(x)=
Therefore, Expected value of x using condition expectation from b]
d)To obtain marginal distribution of x.
Y=-1 | Y=0 | Y=1 | Total | |
X=1 | 0 | 1/4 | 0 | 1/4 |
X=0 | 1/4 | 1/4 | 1/4 | 3/4 |
Total | 1/4 | 2/4 | 1/4 | 1 |
Marginal distribution of x
x | 1 | 0 | |
p(x) | 1/4 | 3/4 | 1 |
E(x)=
Now from (c) and (d) we verify that