Question

In: Statistics and Probability

The joint probability distribution of random variables, X and Y, is shown in the following table:...

The joint probability distribution of random variables, X and Y, is shown in the following table: X 2 4 6 Y 1 0.10 0.20 0.08 2 0.06 0.12 0.16 3 0.15 0.04 0.09

(a) Calculate P ( X=4 | Y=1)

(b) Calculate V (Y | X=2) .

(c) Calculate V (3Y-X ) .

Solutions

Expert Solution


Related Solutions

The joint probability distribution of variables X and Y is shown in the table below. ...............................................................................X..........................................................................
The joint probability distribution of variables X and Y is shown in the table below. ...............................................................................X....................................................................... Y 1 2 3 1 0.30 0.18 0.12 2 0.15 0.09 0.06 3 0.05 0.03 0.02 Calculate E(XY) Determine the marginal probability distributions of X and Y.             Calculate E(X) and E(Y)             Calculate V(X) and V(Y)             Are X and Y independent? Explain.             Find P(Y = 2| X = 1) Calculate COV(X,Y). Did you expect this answer? Why? Find the probability distribution...
.The following table displays the joint probability distribution of two discrete random variables X and Y....
.The following table displays the joint probability distribution of two discrete random variables X and Y. -1 0 1 2 1 0.2 0 0.16 0.12 0 0.3 0.12 0.1 0 What is P(X=1/Y=1)?    What is the value of E(X/Y=1)?    What is the value of VAR(X/Y = 1)? What is the correlation between X and Y? What is variance of W = 4X - 2Y. What is covariance between X and W?
Suppose the joint probability distribution of two binary random variables X and Y are given as...
Suppose the joint probability distribution of two binary random variables X and Y are given as follows. x/y 1 2 0 3/10 0 1 4/10 3/10 X goes along side as 0 and 1, Y goes along top as 1 and 2 e) Find joint entropy H(X, Y ). f) Suppose X and Y are independent. Show that H(X|Y ) = H(X). g) Suppose X and Y are independent. Show that H(X, Y ) = H(X) + H(Y ). h)...
The table below gives the joint distribution between random variables X and Y . y 0...
The table below gives the joint distribution between random variables X and Y . y 0 2 4 x 0 0.03 0.01 0.20 1 0.15 0.10 0.51 (a). [4pts] Find P(X = 0, Y = 2). 1 Problem 2(b). [6pts] Find E[X]. Problem 2(c). [6pts] Find Cov(X, Y ). Problem 2(d). [6pts] Find P(X = 1|Y = 2).
Suppose the joint probability distribution of X and Y is given by the following table. Y=>3...
Suppose the joint probability distribution of X and Y is given by the following table. Y=>3 6 9 X 1 0.2 0.2 0 2 0.2 0 0.2 3 0 0.1 0.1 The table entries represent the probabilities. Hence the outcome [X=1,Y=6] has probability 0.2. a) Compute E(X), E(X2), E(Y), and E(XY). (For all answers show your work.) b) Compute E[Y | X = 1], E[Y | X = 2], and E[Y | X = 3]. c) In this case, E[Y...
Let X and Y be two discrete random variables whose joint probability distribution function is given...
Let X and Y be two discrete random variables whose joint probability distribution function is given by f(x, y) = 1 12 x 2 + y for x = −1, 1 and y = 0, 1, 2 a) Find cov(X, Y ). b) Determine whether X and Y are independent or not. (Justify your answer.
If the joint probability density function of the random variables X and Y is given by...
If the joint probability density function of the random variables X and Y is given by f(x, y) = (1/4)(x + 2y) for 0 < x < 2, 0 < y < 1, 0 elsewhere (a) Find the conditional density of Y given X = x, and use it to evaluate P (X + Y/2 ≥ 1 | X = 1/2) (b) Find the conditional mean and the conditional variance of Y given X = 1/2 (c) Find the variance...
Discrete random variables X and Y have joint probability mass function defined by the table below....
Discrete random variables X and Y have joint probability mass function defined by the table below. X= { 0 , 1 , 2 } , Y= { − 2 , 0 , 2 }    y/x 0 1 2 -2 0.2 0.1 0.1 0 0.0 0.4 0.0 2 0.1 0.0 0.1 A.) Evaluate the expected value of X (round to 2 decimal digits) B.) Evaluate the variance of X (round to 2 decimal digits) C.) Evaluate the covariance of X...
. Let X and Y be a random variables with the joint probability density function fX,Y...
. Let X and Y be a random variables with the joint probability density function fX,Y (x, y) = { 1, 0 < x, y < 1 0, otherwise } . a. Let W = max(X, Y ) Compute the probability density function of W. b. Let U = min(X, Y ) Compute the probability density function of U. c. Compute the probability density function of X + Y ..
This is the probability distribution between two random variables X and Y: Y \ X 0...
This is the probability distribution between two random variables X and Y: Y \ X 0 1 2 3 0.1 0.2 0.2 4 0.2 0.2 0.1 a) Are those variables independent? b) What is the marginal probability of X? c) Find E[XY]
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT