In: Statistics and Probability
Solution:
x | x2 |
3 | 9 |
4 | 16 |
6 | 36 |
1 | 1 |
10 | 100 |
6 | 36 |
∑x=30 | ∑x2=198 |
Mean ˉx=∑xn
=3+4+6+1+10+66
=306
=5
Median :
Observations in the ascending order are :
1,3,4,6,6,10
Here, n=6 is even.
M=Value of(n/2)thobservation+Value of(n/2 )+1)thobservation
/2
=Value of(6/2)thobservation+Value of(6 /2)+1)thobservation/2
=Value of3rdobservation+Value of4thobservation/2
=4+62
=5
Sample Standard deviation S=√∑x2-(∑x)2nn-1
=√198-(30)265
=√198-1505
=√485
=√9.6
=3.0984
The Range = Maximum value - Minimum value
= 10 - 1
= 9
The Range = 9
Solution:
x | x2 |
8 | 64 |
5 | 25 |
1 | 1 |
5 | 25 |
2 | 4 |
3 | 9 |
--- | --- |
∑x=24 | ∑x2=128 |
Mean ˉx=∑xn
=8+5+1+5+2+36
=246
=4
Median :
Observations in the ascending order are :
1,2,3,5,5,8
Here, n=6 is even.
M=Value of(n2)thobservation+Value of(n/2)+1)thobservation/2
=Value of(62)thobservation+Value of(6/2)+1)thobservation/2
=Value of3rdobservation+Value of4thobservation/2
=3+52
=4
Sample Standard deviation S=√∑x2-(∑x)2nn-1
=√128-(24)26/5
=√128-96/5
=√32/5
=√6.4
=2.5298
The Range = Maximum value - Minimum value
= 8- 1
= 7
The Range = 7