In: Finance
A proposed nuclear power plant will cost $1.9 billion to build and then will produce cash flows of $270 million a year for 15 years. After that period (in year 15), it must be decommissioned at a cost of $870 million. (Negative amounts should be indicated by a minus sign. Do not round intermediate calculations. Enter your answers in billions rounded to 3 decimal places.)
a. What is project NPV if the discount rate is 4%?
b. What if the discount rate is 18%?
a. | NPV at 4% discount rate | 0.619 | billion | |||||||||
Working: | ||||||||||||
# 1 | Present value of annuity of 1 | = | (1-(1+i)^-n)/i | Where, | ||||||||
= | (1-(1+0.04)^-15)/0.04 | i | 4% | |||||||||
= | 11.11839 | n | 15 | |||||||||
# 2 | Present value of 1 | = | (1+i)^-n | |||||||||
= | (1+0.04)^-15 | |||||||||||
= | 0.555265 | |||||||||||
# 3 | Present value of annual cash flows | = | 0.2700 | billion | * | 11.11839 | = | 3.001965 | ||||
Less: | ||||||||||||
Present value of cash outflow: | ||||||||||||
Present value of initial cost | 1.900 | |||||||||||
Present value of cost in 15 years | 0.8700 | billion | * | 0.555265 | = | 0.4831 | 2.383 | |||||
NPV | 0.619 | |||||||||||
b. | NPV at 18% discount rate | -0.598 | billion | |||||||||
Working: | ||||||||||||
# 1 | Present value of annuity of 1 | = | (1-(1+i)^-n)/i | Where, | ||||||||
= | (1-(1+0.18)^-15)/0.18 | i | 18% | |||||||||
= | 5.091578 | n | 15 | |||||||||
# 2 | Present value of 1 | = | (1+i)^-n | |||||||||
= | (1+0.18)^-15 | |||||||||||
= | 0.083516 | |||||||||||
# 3 | Present value of annual cash flows | = | 0.2700 | billion | * | 5.091578 | = | 1.374726 | ||||
Less: | ||||||||||||
Present value of cash outflow: | ||||||||||||
Present value of initial cost | 1.900 | |||||||||||
Present value of cost in 15 years | 0.8700 | billion | * | 0.083516 | = | 0.0727 | 1.973 | |||||
NPV | -0.598 | |||||||||||