Question

In: Statistics and Probability

The following table provides data for 20 samples each of size five. Sample x1 x2 x3...

  1. The following table provides data for 20 samples each of size five.

Sample

x1

x2

x3

x4

x5

1

4.960

4.946

4.950

4.956

4.958

2

4.958

4.927

4.935

4.940

4.950

3

4.971

4.929

4.965

4.952

4.938

4

4.940

4.982

4.970

4.953

4.960

5

4.964

4.950

4.953

4.962

4.956

6

4.969

4.951

4.955

4.966

4.954

7

4.960

4.944

4.957

4.948

4.951

8

4.969

4.949

4.963

4.952

4.962

9

4.984

4.928

4.960

4.943

4.955

10

4.970

4.934

4.961

4.940

4.965

11

4.975

4.959

4.962

4.971

4.968

12

4.945

4.977

4.950

4.969

4.954

13

4.976

4.964

4.970

4.968

4.972

14

4.970

4.954

4.964

4.959

4.968

15

4.982

4.962

4.968

4.975

4.963

16

4.961

4.943

4.950

4.949

4.957

17

4.980

4.970

4.975

4.978

4.977

18

4.975

4.968

4.971

4.969

4.972

19

4.977

4.966

4.969

4.973

4.970

20

4.975

4.967

4.969

4.972

4.972

  1. Identify out-of-control points. If necessary, recompute the control limits after removing the outliers. What do you conclude? (10 pts) Please answer in detail using excel

Solutions

Expert Solution

Answer :

1) We have to obtain outliers

By using Excel

Functions :

1. Quartiles =QUARTILE()

2. Interquartile Range = Q3 - Q1

3.  Lower limit = Q1 - ( 1.5 * Interquartile Range)

4. Upper limit = Q3 +  ( 1.5 * Interquartile Range)

Sample x1 x2 x3 x4 x5
1 4.96 4.946 4.95 4.956 4.958
2 4.958 4.927 4.935 4.94 4.95
3 4.971 4.929 4.965 4.952 4.938
4 4.94 4.982 4.97 4.953 4.96
5 4.964 4.95 4.953 4.962 4.956
6 4.969 4.951 4.955 4.966 4.954
7 4.96 4.944 4.957 4.948 4.951
8 4.969 4.949 4.963 4.952 4.962
9 4.984 4.928 4.96 4.943 4.955
10 4.97 4.934 4.961 4.94 4.965
11 4.975 4.959 4.962 4.971 4.968
12 4.945 4.977 4.95 4.969 4.954
13 4.976 4.964 4.97 4.968 4.972
14 4.97 4.954 4.964 4.959 4.968
15 4.982 4.962 4.968 4.975 4.963
16 4.961 4.943 4.95 4.949 4.957
17 4.98 4.97 4.975 4.978 4.977
Q1 4.96 4.943 4.953 4.949 4.954
Q3 4.975 4.962 4.965 4.968 4.965
IQR 0.015 0.019 0.012 0.019 0.011
Lower limit 4.9375 4.9145 4.935 4.9205 4.9375
Upper limit 4.9975 4.9905 4.983 4.9965

4.9815

To Identify the Outliers:

OR function is used to Identify the Outliers.

TRUE value indicates an outlier

Hence ,

  

outlier x1 outlier x2 outlier x3 outlier x4 outlier x5
FALSE FALSE FALSE FALSE FALSE
FALSE FALSE FALSE FALSE FALSE
FALSE FALSE FALSE FALSE FALSE
FALSE FALSE FALSE FALSE FALSE
FALSE FALSE FALSE FALSE FALSE
FALSE FALSE FALSE FALSE FALSE
FALSE FALSE FALSE FALSE FALSE
FALSE FALSE FALSE FALSE FALSE
FALSE FALSE FALSE FALSE FALSE
FALSE FALSE FALSE FALSE FALSE
FALSE FALSE FALSE FALSE FALSE
FALSE FALSE FALSE FALSE FALSE
FALSE FALSE FALSE FALSE FALSE
FALSE FALSE FALSE FALSE FALSE
FALSE FALSE FALSE FALSE FALSE
FALSE FALSE FALSE FALSE FALSE
FALSE FALSE FALSE FALSE FALSE

Hence, Given data is Under Control.


Related Solutions

This data provides 715 observations on variable X1, X2, and X3. Use Excel or MegaStat for...
This data provides 715 observations on variable X1, X2, and X3. Use Excel or MegaStat for the questions below: a. Conduct the z-test at the 0.05 level to see if the population means for X2 and X3 are equal. b. Conduct a test at the 0.05 level to see if the variance of X2 and X3 are equal. c. Test to see whether the variance of X1 is greater than 9. Conduct this test at the 0.05 level. d. conduct...
1. Compute the sample standard deviation of the following data: x1 = 12,x2 = 7,x3 =...
1. Compute the sample standard deviation of the following data: x1 = 12,x2 = 7,x3 = 6,x4 = 8,x5 = 9. A. ≈ 2.3 B. ≈ 2.6 C. ≈ 5.3 D. ≈ 6.8 E. other value 2. Suppose a simple random sample of size 16 from a normal population yields observed statistics of x¯ = 15.7 and s = 3.8. Find a 99% confidence interval for the population mean µ. A. [12.81,18.59] B. [12.9,18.50] C. [12.93,18.47] D. [13.25,18.15] E. other...
4.Maximize: Z = 2X1+ X2-3X3 Subject to: 2X1+ X2= 14 X1+ X2+ X3≥6 X1, X2, X3≥0...
4.Maximize: Z = 2X1+ X2-3X3 Subject to: 2X1+ X2= 14 X1+ X2+ X3≥6 X1, X2, X3≥0 Solve the problem by using the M-technique.
(a) Consider three positive integers, x1, x2, x3, which satisfy the inequality below: x1 +x2 +x3...
(a) Consider three positive integers, x1, x2, x3, which satisfy the inequality below: x1 +x2 +x3 =17. (1) Let’s assume each element in the sample space (consisting of solution vectors (x1, x2, x3) satisfying the above conditions) is equally likely to occur. For example, we have equal chances to have (x1, x2, x3) = (1, 1, 15) or (x1, x2, x3) = (1, 2, 14). What is the probability the events x1 +x2 ≤8occurs,i.e.,P(x1 +x2 ≤8|x1 +x2 +x3 =17andx1,x2,x3 ∈Z+)(Z+...
Let X1, X2, X3 be continuous random variables with joint pdf f(X1, X2, X3)= 2 if...
Let X1, X2, X3 be continuous random variables with joint pdf f(X1, X2, X3)= 2 if 1<X1<2 -1<X2<0 -X2-1<X3<0                         0 otherwise Find Cov(X2, X3)
How do you simplify the following boolean expressions: Y3= X3' X2 X1 X0' + X3' X2...
How do you simplify the following boolean expressions: Y3= X3' X2 X1 X0' + X3' X2 X1 X0 + X3 X2 X1 X0' +X3X2X1X0 Y2 = X3' X2 X1' X0' + X3' X2 X1' X0 + X3 X2 X1' X0' + X3 X2 X1' X0 +  X3 X2' X1' X0' + X3 X2' X1' X0 + X3 X2' X1 X0' + X3 X2' X1 X0 Y1 = X3' X2' X1 X0' + X3' X2' X1 X0 + X3' X2 X1 X0'...
Let X1,X2,X3 be i.i.d. N(0,1) random variables. Suppose Y1 = X1 + X2 + X3, Y2...
Let X1,X2,X3 be i.i.d. N(0,1) random variables. Suppose Y1 = X1 + X2 + X3, Y2 = X1 −X2, Y3 =X1 −X3. Find the joint pdf of Y = (Y1,Y2,Y3)′ using : Multivariate normal distribution properties.
Let X1, X2, X3, and X4 be a random sample of observations from a population with...
Let X1, X2, X3, and X4 be a random sample of observations from a population with mean ? and variance ?2. Consider the following two point estimators of ?: b1= 0.30 X1 + 0.30 X2 + 0.30 X3 + 0.30 X4 and b2= 0.20 X1 + 0.40 X2 + 0.40 X3 + 0.20 X4 . Which of the following constraints is true? A. Var(b1)/Var(b2)=0.76 B. Var(b1)Var(b2) C. Var(b1)=Var(b2) D. Var(b1)>Var(b2)
We have a random sample of observations on X: x1, x2, x3, x4,…,xn. Consider the following...
We have a random sample of observations on X: x1, x2, x3, x4,…,xn. Consider the following estimator of the population mean: x* = x1/2 + x2/4 + x3/4. This estimator uses only the first three observations. a) Prove that x* is an unbiased estimator. b) Derive the variance of x* c) Is x* an efficient estimator? A consistent estimator? Explain.
Does the input requirement set V (y) = {(x1, x2, x3) | x1 + min {x2,...
Does the input requirement set V (y) = {(x1, x2, x3) | x1 + min {x2, x3} ≥ 3y, xi ≥ 0 ∀ i = 1, 2, 3} corresponds to a regular (closed and non-empty) input requirement set? Does the technology satisfies free disposal? Is the technology convex?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT