Question

In: Economics

We have a random sample of observations on X: x1, x2, x3, x4,…,xn. Consider the following...

We have a random sample of observations on X: x1, x2, x3, x4,…,xn. Consider the following estimator of the population mean: x* = x1/2 + x2/4 + x3/4. This estimator uses only the first three observations.

a) Prove that x* is an unbiased estimator.

b) Derive the variance of x*

c) Is x* an efficient estimator? A consistent estimator? Explain.

Solutions

Expert Solution

Had solved all the parts but not in an asked manner, so go through the complete solution once .


Related Solutions

Suppose we have a random sample of n observations {x1, x2, x3,…xn}. Consider the following estimator...
Suppose we have a random sample of n observations {x1, x2, x3,…xn}. Consider the following estimator of µx, the population mean. Z = 12x1 + 14x2 + 18x3 +…+ 12n-1xn−1 + 12nxn Verify that for a finite sample size, Z is a biased estimator. Recall that Bias(Z) = E(Z) − µx. Write down a formula for Bias(Z) as a function of n and µx. Is Z asymptotically unbiased? Explain. Use the fact that for 0 < r < 1, limn→∞i=1nri...
Let X1, X2, X3, and X4 be a random sample of observations from a population with...
Let X1, X2, X3, and X4 be a random sample of observations from a population with mean ? and variance ?2. Consider the following two point estimators of ?: b1= 0.30 X1 + 0.30 X2 + 0.30 X3 + 0.30 X4 and b2= 0.20 X1 + 0.40 X2 + 0.40 X3 + 0.20 X4 . Which of the following constraints is true? A. Var(b1)/Var(b2)=0.76 B. Var(b1)Var(b2) C. Var(b1)=Var(b2) D. Var(b1)>Var(b2)
Suppose that X1, X2, X3, X4 is a simple random (independent and identically distributed) sample of...
Suppose that X1, X2, X3, X4 is a simple random (independent and identically distributed) sample of size 4 from a normal distribution with an unknown mean μ but a known variance 9. Suppose further that Y1, Y2, Y3, Y4, Y5 is another simple random sample (independent from X1, X2, X3, X4 from a normal distribution with the same mean   μand variance 16. We estimate μ with U = (bar{X}+bar{Y})/2. where bar{X} = (X1 + X2 + X3 + X4)/4 bar{Y}...
Let x1, x2,x3,and x4 be a random sample from population with normal distribution with mean ?...
Let x1, x2,x3,and x4 be a random sample from population with normal distribution with mean ? and variance ?2 . Find the efficiency of T = 17 (X1+3X2+2X3 +X4) relative to x= x/4 , Which is relatively more efficient? Why?
Consider the random sample X1, X2, ..., Xn coming from f(x) = e-(x-a) , x >...
Consider the random sample X1, X2, ..., Xn coming from f(x) = e-(x-a) , x > a > 0. Compare the MSEs of the estimators X(1) (minimum order statistic) and (Xbar - 1) Will rate positively
Let U = {(x1,x2,x3,x4) ∈F4 | 2x1 = x3, x1 + x4 = 0}. (a) Prove...
Let U = {(x1,x2,x3,x4) ∈F4 | 2x1 = x3, x1 + x4 = 0}. (a) Prove that U is a subspace of F4. (b) Find a basis for U and prove that dimU = 2. (c) Complete the basis for U in (b) to a basis of F4. (d) Find an explicit isomorphism T : U →F2. (e) Let T as in part (d). Find a linear map S: F4 →F2 such that S(u) = T(u) for all u ∈...
Let X = ( X1, X2, X3, ,,,, Xn ) is iid, f(x, a, b) =...
Let X = ( X1, X2, X3, ,,,, Xn ) is iid, f(x, a, b) = 1/ab * (x/a)^{(1-b)/b} 0 <= x <= a ,,,,, b < 1 then, find a two dimensional sufficient statistic for (a, b)
Let X1, X2, X3, . . . be independently random variables such that Xn ∼ Bin(n,...
Let X1, X2, X3, . . . be independently random variables such that Xn ∼ Bin(n, 0.5) for n ≥ 1. Let N ∼ Geo(0.5) and assume it is independent of X1, X2, . . .. Further define T = XN . (a) Find E(T) and argue that T is short proper. (b) Find the pgf of T. (c) Use the pgf of T in (b) to find P(T = n) for n ≥ 0. (d) Use the pgf of...
The prices of inputs (x1,x2,x3,x4) are (4,1,3,2): (a) If the production function is given by f(x3,x4)...
The prices of inputs (x1,x2,x3,x4) are (4,1,3,2): (a) If the production function is given by f(x3,x4) =min⁡{x1+x2,x3+x4} what is the minimum cost of producing one unit of output? (b) If the production function is given by f(x3,x4)=x1+x2 +min⁡{x3+x4} what is the minimum cost of producing one unit of output?
Consider the independent observations x1, x2, . . . , xn from the gamma distribution with...
Consider the independent observations x1, x2, . . . , xn from the gamma distribution with pdf f(x) = (1/ Γ(α)β^α)x^(α−1)e ^(−x/β), x > 0 and 0 otherwise. a. Write out the likelihood function b. Write out a set of equations that give the maximum likelihood estimators of α and β. c. Assuming α is known, find the likelihood estimator Bˆ of β. d. Find the expected value and variance of Bˆ
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT