Question

In: Statistics and Probability

This data provides 715 observations on variable X1, X2, and X3. Use Excel or MegaStat for...

This data provides 715 observations on variable X1, X2, and X3. Use Excel or MegaStat for the questions below:

a. Conduct the z-test at the 0.05 level to see if the population means for X2 and X3 are equal.

b. Conduct a test at the 0.05 level to see if the variance of X2 and X3 are equal.

c. Test to see whether the variance of X1 is greater than 9. Conduct this test at the 0.05 level.

d. conduct a simple ANOVA test to see whether the means of X1, X2, X3 are equal. Conduct this test at the 0.05 level. How do the means differ?

Observation X1 X2 X3
1 2.82 28.50 142.20
2 2.70 28.60 139.30
3 2.80 28.60 138.40
4 2.95 28.60 139.70
5 2.84 28.70 138.70
6 3.21 28.90 139.40
7 3.20 28.80 140.30
8 3.38 28.90 140.00
9 4.04 28.90 140.40
10 4.05 28.80 140.70
11 4.15 28.80 141.80
12 4.49 28.80 143.60
13 4.35 28.80 143.30
14 3.96 28.80 139.80
15 3.31 28.80 138.50
16 3.23 28.80 139.70
17 3.29 28.80 137.60
18 2.46 28.80 137.90
19 2.30 28.70 138.90
20 2.30 28.70 139.40
21 2.48 28.80 140.50
22 2.30 28.80 141.20
23 2.37 28.80 142.30
24 2.25 28.70 144.50
25 2.24 28.70 144.50
26 2.42 28.70 141.60
27 2.39 28.70 140.60
28 2.29 28.70 142.40
29 2.29 28.70 140.60
30 2.33 28.70 141.20
31 2.24 28.80 141.50
32 2.39 28.90 141.40
33 2.28 29.00 143.10
34 2.30 29.10 144.40
35 2.48 29.20 146.30
36 2.60 29.30 149.20
37 2.72 29.40 148.90
38 2.73 29.50 145.60
39 2.72 29.60 144.60
40 2.73 29.80 146.70
41 2.69 29.80 144.50
42 2.73 29.80 144.80
43 2.92 29.90 145.00
44 2.82 30.00 144.40
45 2.78 30.00 145.50
46 2.74 30.10 147.00
47 2.83 30.20 148.80
48 2.87 30.30 151.90
49 2.91 30.40 152.10
50 2.92 30.60 148.70
51 2.89 30.70 147.80
52 2.90 31.00 150.00
53 2.93 31.00 147.90
54 2.99 31.20 148.70
55 3.18 31.40 149.90
56 3.32 31.50 149.50
57 3.38 31.70 151.00
58 3.45 31.80 152.80
59 3.52 32.00 155.20
60 3.52 32.20 157.50
61 3.52 32.30 157.90
62 3.53 32.40 153.90
63 3.54 32.60 153.10
64 3.47 32.70 155.20
65 3.48 32.90 152.70
66 3.48 33.20 153.90
67 3.46 33.20 155.50
68 3.50 33.40 155.50
69 3.53 33.60 157.80
70 3.57 33.60 159.70
71 3.64 33.80 161.60
72 3.84 33.90 164.90
73 3.81 34.00 165.30
74 3.93 34.20 160.30
75 3.93 34.30 159.90
76 3.93 34.40 162.60
77 3.89 34.50 158.70
78 3.80 34.70 160.50
79 3.84 34.90 161.80
80 3.84 35.10 161.20
81 3.92 35.30 163.90
82 4.03 35.60 166.50
83 4.09 35.80 168.20
84 4.38 36.00 172.60
85 4.59 36.20 173.80
86 4.65 36.40 168.60
87 4.59 36.50 168.70
88 4.62 36.70 172.40
89 4.64 37.00 168.00
90 4.50 37.00 170.00
91 4.80 37.20 169.20
92 4.96 37.40 168.30
93 5.37 37.50 171.10
94 5.35 37.70 171.60
95 5.32 37.80 172.90
96 4.96 38.00 176.90
97 4.72 38.20 176.60
98 4.56 38.40 171.60
99 4.26 38.50 172.90
100 3.84 38.60 174.70
101 3.60 38.80 172.30
102 3.54 38.90 175.60
103 4.21 39.00 177.20
104 4.27 39.20 177.20
105 4.42 39.40 179.80
106 4.56 39.60 181.90
107 4.73 39.70 183.80
108 4.97 40.00 188.40
109 5.00 40.50 189.20
110 4.98 40.30 183.00
111 5.17 40.60 183.50
112 5.38 40.90 187.30
113 5.66 41.00 184.60
114 5.52 41.40 188.20
115 5.31 41.60 189.80
116 5.09 41.80 189.50
117 5.19 42.20 191.90
118 5.35 42.40 194.20
119 5.45 42.70 197.60
120 5.96 43.00 202.80
121 6.14 43.10 203.80
122 6.12 43.40 197.30
123 6.02 43.60 197.80
124 6.11 43.80 201.50
125 6.04 43.90 197.40
126 6.44 44.20 200.20
127 7.00 44.50 201.20
128 6.98 44.70 199.50
129 7.09 44.90 201.20
130 7.00 45.20 202.90
131 7.24 45.50 205.00
132 7.82 45.70 209.30
133 7.87 46.00 210.80
134 7.13 46.10 202.00
135 6.63 46.30 203.50
136 6.51 46.50 208.10
137 6.84 46.90 204.30
138 6.68 47.20 206.90
139 6.45 47.40 208.10
140 6.41 47.60 208.00
141 6.12 47.90 210.80
142 5.91 48.10 212.30
143 5.28 48.30 214.50
144 4.87 48.60 220.10
145 4.44 48.90 220.40
146 3.70 49.20 214.30
147 3.38 49.40 216.40
148 3.86 49.70 221.40
149 4.14 50.00 218.80
150 4.75 50.40 222.90
151 5.40 50.90 225.10
152 4.94 51.20 223.60
153 4.69 51.40 225.40
154 4.46 51.60 226.60
155 4.22 51.80 228.80
156 4.01 52.00 234.50
157 3.38 52.30 235.00
158 3.20 52.60 228.90
159 3.73 53.00 231.70
160 3.71 53.10 236.90
161 3.69 53.40 232.20
162 3.91 53.70 236.10
163 3.98 54.00 239.10
164 4.02 54.40 238.70
165 4.66 54.80 241.90
166 4.74 55.30 244.20
167 4.78 55.70 247.70
168 5.07 56.20 256.10
169 5.41 56.60 256.40
170 5.60 56.90 248.40
171 6.09 57.20 248.80
172 6.26 57.80 254.00
173 6.36 58.10 250.80
174 7.19 58.50 256.40
175 8.01 58.80 258.10
176 8.67 59.10 255.60
177 8.29 59.60 256.50
178 7.22 59.90 258.30
179 7.83 60.30 262.70
180 7.45 60.80 270.20
181 7.77 61.30 268.60
182 7.12 61.80 261.10
183 7.96 62.30 263.50
184 8.33 63.00 268.50
185 8.23 63.40 263.30
186 7.90 63.70 268.30
187 7.55 64.10 270.10
188 8.96 64.70 268.10
189 8.06 65.20 269.70
190 7.46 65.80 271.70
191 7.47 66.50 275.70
192 7.15 67.00 281.80
193 6.26 67.40 278.50
194 5.50 67.80 269.90
195 5.49 68.40 272.90
196 5.61 68.50 277.70
197 5.23 69.10 274.40
198 5.34 70.00 282.30
199 6.13 70.50 284.40
200 6.44 71.00 282.70
201 6.42 71.20 284.30
202 5.96 71.70 284.90
203 5.48 72.30 289.90
204 5.44 72.80 295.30
205 4.87 73.20 293.20
206 4.88 73.90 285.30
207 5.00 74.70 287.70
208 4.86 75.50 296.10
209 5.20 76.10 291.30
210 5.41 76.60 295.60
211 5.23 77.10 298.40
212 5.14 77.60 297.10
213 5.08 78.10 298.60
214 4.92 78.60 302.90
215 4.75 79.10 305.70
216 4.35 79.50 314.50
217 4.62 80.20 313.60
218 4.67 80.80 304.90
219 4.60 81.30 308.20
220 4.54 82.10 318.60
221 4.96 82.50 311.60
222 5.02 83.10 317.70
223 5.19 83.90 322.20
224 5.49 84.50 320.20
225 5.81 85.20 323.70
226 6.16 85.90 327.90
227 6.10 86.60 331.40
228 6.07 87.40 340.00
229 6.44 88.00 339.30
230 6.45 88.70 327.90
231 6.29 89.40 330.80
232 6.29 90.00 343.40
233 6.41 90.80 338.20
234 6.73 91.50 345.20
235 7.01 92.00 349.50
236 7.08 92.70 347.50
237 7.85 93.60 352.70
238 7.99 94.40 354.90
239 8.64 95.20 358.50
240 9.08 96.00 367.90
241 9.35 96.80 363.30
242 9.32 97.40 351.70
243 9.48 98.00 356.10
244 9.46 98.80 371.30
245 9.61 99.50 362.20
246 9.06 100.30 371.90
247 9.24 101.20 378.40
248 9.52 102.10 376.90
249 10.26 103.10 380.50
250 11.70 103.90 382.60
251 11.79 104.30 384.40
252 12.04 104.80 393.20
253 12.00 106.00 390.40
254 12.86 106.70 380.80
255 15.20 107.50 382.20
256 13.20 107.70 386.70
257 8.58 108.70 377.80
258 7.07 109.60 387.30
259 8.06 110.50 394.60
260 9.13 111.70 398.30
261 10.27 112.40 404.70
262 11.62 113.40 410.70
263 13.73 114.90 415.80
264 15.49 115.30 419.50
265 15.02 115.30 416.40
266 14.79 116.20 405.50
267 13.36 117.00 412.20
268 13.69 117.90 431.00
269 16.30 118.30 418.50
270 14.73 118.70 422.80
271 14.95 119.50 427.70
272 15.51 119.90 425.90
273 14.70 120.10 427.00
274 13.54 120.50 429.70
275 10.86 121.40 435.10
276 10.85 122.50 447.00
277 12.28 123.20 448.40
278 13.48 123.90 432.40
279 12.68 124.40 435.60
280 12.70 125.50 451.10
281 12.09 126.70 440.90
282 12.47 127.40 446.20
283 11.35 128.10 449.50
284 8.68 129.00 449.80
285 7.92 129.90 456.20
286 7.71 130.90 465.70
287 8.07 131.60 474.40
288 7.94 132.50 485.80
289 7.86 133.60 482.80
290 8.11 135.00 474.20
291 8.35 136.40 482.70
292 8.21 137.40 498.60
293 8.19 138.70 493.90
294 8.79 139.60 503.50
295 9.08 140.60 510.50
296 9.34 141.40 508.20
297 9.00 142.70 511.40
298 8.64 144.10 517.20
299 8.76 145.30 521.80
300 9.00 146.20 533.30
301 8.90 147.40 530.20
302 9.09 148.00 516.90
303 9.52 149.10 523.20
304 9.69 150.10 539.90
305 9.83 150.70 530.70
306 9.87 151.90 541.40
307 10.12 152.70 543.30
308 10.47 153.50 539.00
309 10.37 154.40 542.50
310 9.74 154.70 542.20
311 8.61 155.50 549.80
312 8.06 156.10 564.60
313 7.76 156.80 561.10
314 8.27 157.90 551.90
315 8.52 158.50 558.40
316 7.95 159.30 575.10
317 7.48 160.40 569.30
318 6.95 161.70 585.20
319 7.08 162.80 592.00
320 7.14 164.20 594.90
321 7.10 165.10 602.00
322 7.16 166.10 605.30
323 7.24 167.00 614.90
324 7.10 167.70 633.30
325 7.07 168.40 626.60
326 7.06 169.40 612.80
327 6.56 170.70 624.30
328 6.06 171.40 647.00
329 6.15 172.70 645.70
330 6.21 173.60 662.80
331 5.83 174.70 673.40
332 5.53 175.90 678.40
333 5.21 176.80 684.50
334 5.18 178.20 692.20
335 5.35 179.20 708.80
336 5.53 180.40 739.80
337 5.43 181.90 737.10
338 5.59 183.30 717.10
339 5.59 184.00 723.10
340 5.64 185.30 752.00
341 5.66 186.50 739.30
342 5.67 187.60 743.80
343 5.69 188.70 746.20
344 6.04 190.00 744.20
345 6.40 191.40 744.50
346 6.13 193.10 753.20
347 5.69 195.20 755.50
348 5.77 196.70 765.40
349 5.81 197.90 764.20
350 5.66 198.90 744.50
351 5.70 200.20 751.60
352 5.91 201.80 777.90
353 6.26 203.20 763.40
354 6.46 204.60 778.50
355 6.73 206.10 785.50
356 7.06 207.10 781.00
357 7.24 208.60 779.70
358 7.35 209.70 780.80
359 7.76 210.70 786.90
360 8.07 212.00 803.10
361 8.27 212.90 792.10
362 8.53 213.50 771.60
363 8.82 214.70 774.60
364 8.65 215.30 790.20
365 8.43 216.30 766.10
366 8.15 217.20 772.80
367 7.88 218.00 780.70
368 7.90 218.50 776.50
369 7.75 219.10 777.70
370 7.64 219.80 783.20
371 7.69 220.50 790.20
372 7.63 222.30 810.60
373 7.64 223.90 800.70
374 7.74 225.50 786.70
375 7.90 227.50 794.50
376 7.77 229.40 816.20
377 7.74 231.20 795.50
378 7.73 233.30 809.00
379 7.62 235.50 811.00
380 7.45 238.40 812.70
381 7.36 241.40 817.10
382 7.17 243.50 816.10
383 7.06 245.00 824.60
384 6.74 246.50 842.70
385 6.22 250.60 831.70
386 5.94 253.50 822.10
387 5.91 255.70 833.70
388 5.65 255.70 851.90
389 5.46 256.50 840.30
390 5.57 257.60 856.70
391 5.58 259.10 860.90
392 5.33 260.90 863.20
393 5.22 262.10 865.40
394 4.99 263.70 874.00
395 4.56 265.50 892.30
396 4.07 267.10 915.60
397 3.80 268.60 916.40
398 3.84 270.20 915.10
399 4.04 271.50 929.60
400 3.75 273.10 953.70
401 3.63 274.80 942.90
402 3.66 276.30 951.00
403 3.21 279.20 962.00
404 3.13 282.00 970.10
405 2.91 284.90 982.70
406 2.86 287.30 1000.80
407 3.13 289.50 1021.40
408 3.22 292.10 1045.60
409 3.00 294.20 1039.80
410 2.93 296.10 1021.90
411 2.95 298.30 1030.50
412 2.87 301.00 1057.40
413 2.96 303.80 1056.80
414 3.07 306.40 1071.80
415 3.04 309.40 1083.10
416 3.02 311.90 1088.10
417 2.95 314.90 1098.80
418 3.02 317.30 1111.60
419 3.10 319.10 1129.00
420 3.06 321.60 1153.30
421 2.98 324.90 1141.70
422 3.25 328.10 1123.80
423 3.50 331.10 1131.10
424 3.68 333.70 1152.20
425 4.14 336.80 1132.00
426 4.14 339.80 1141.80
427 4.33 343.60 1150.90
428 4.48 345.40 1144.10
429 4.62 347.70 1146.40
430 4.95 350.30 1147.90
431 5.29 353.00 1156.20
432 5.60 354.50 1174.50
433 5.71 357.40 1159.50
434 5.77 358.50 1135.30
435 5.73 362.20 1139.30
436 5.65 365.50 1160.30
437 5.67 368.00 1134.00
438 5.47 367.90 1141.00
439 5.42 368.20 1145.70
440 5.40 368.80 1139.30
441 5.28 369.80 1138.40
442 5.28 370.90 1132.90
443 5.36 371.50 1138.60
444 5.14 372.80 1152.70
445 5.00 373.30 1130.20
446 4.83 372.40 1105.80
447 4.96 374.90 1118.00
448 4.95 376.10 1131.80
449 5.02 377.70 1105.90
450 5.09 380.20 1115.00
451 5.15 383.10 1110.70
452 5.05 385.70 1097.70
453 5.09 387.90 1091.70
454 4.99 389.90 1078.40
455 5.03 392.20 1087.40
456 4.91 394.60 1105.80
457 5.03 396.80 1087.90
458 5.01 398.80 1066.80
459 5.14 401.50 1069.20
460 5.16 403.30 1074.50
461 5.05 406.20 1054.70
462 4.93 408.50 1064.80
463 5.05 410.80 1065.80
464 5.14 413.20 1069.10
465 4.95 415.60 1059.50
466 4.97 418.20 1057.60
467 5.14 421.80 1074.10
468 5.16 425.30 1097.50
469 5.04 427.50 1080.20
470 5.09 430.00 1066.20
471 5.03 431.90 1075.90
472 4.95 433.80 1087.70
473 5.00 436.10 1070.80
474 4.98 438.70 1075.20
475 4.96 442.20 1074.20
476 4.90 444.80 1069.30
477 4.61 449.80 1070.60
478 3.96 453.70 1077.40
479 4.41 457.20 1098.00
480 4.39 460.40 1121.20
481 4.34 463.40 1103.90
482 4.44 467.40 1085.20
483 4.44 471.60 1097.50
484 4.29 475.70 1113.60
485 4.50 480.00 1096.40
486 4.57 483.40 1098.20
487 4.55 487.10 1097.20
488 4.72 490.50 1092.80
489 4.68 494.50 1086.20
490 4.86 499.20 1095.10
491 5.07 505.30 1113.00
492 5.20 517.90 1148.20
493 5.32 524.90 1126.90
494 5.55 518.00 1097.40
495 5.69 516.90 1108.90
496 5.66 517.90 1125.70
497 5.79 519.10 1100.40
498 5.69 521.20 1101.80
499 5.96 522.60 1102.80
500 6.09 522.80 1094.50
501 6.00 524.10 1088.80
502 6.11 526.20 1092.20
503 6.17 528.30 1092.10
504 5.77 531.30 1111.70
505 5.15 534.10 1100.40
506 4.88 536.70 1089.80
507 4.42 539.30 1111.20
508 3.87 542.70 1126.70
509 3.62 545.80 1114.70
510 3.49 548.70 1126.30
511 3.51 554.40 1139.70
512 3.36 562.40 1144.50
513 2.64 567.80 1193.60
514 2.16 571.60 1159.20
515 1.87 575.80 1169.00
516 1.69 581.20 1208.50
517 1.65 586.60 1191.80
518 1.72 591.30 1178.30
519 1.79 595.40 1196.80
520 1.71 599.50 1196.90
521 1.73 604.90 1186.00
522 1.70 610.20 1194.70
523 1.68 615.40 1200.40
524 1.62 616.90 1182.30
525 1.63 618.20 1185.80
526 1.58 620.00 1196.60
527 1.23 622.80 1205.30
528 1.19 626.20 1245.50
529 1.17 630.10 1225.50
530 1.17 635.00 1225.50
531 1.13 639.40 1245.10
532 1.13 643.00 1259.60
533 1.07 645.80 1266.60
534 0.92 647.40 1284.70
535 0.90 648.30 1287.90
536 0.95 650.20 1292.20
537 0.94 652.70 1286.20
538 0.92 657.40 1288.80
539 0.93 660.00 1293.90
540 0.90 662.50 1332.50
541 0.88 663.80 1301.80
542 0.93 665.40 1306.70
543 0.94 666.90 1337.90
544 0.94 669.80 1343.20
545 1.02 673.10 1333.40
546 1.27 677.60 1347.70
547 1.33 685.40 1338.80
548 1.48 686.80 1352.60
549 1.65 690.40 1349.10
550 1.76 693.50 1351.40
551 2.07 697.80 1371.00
552 2.19 697.80 1401.50
553 2.33 698.90 1361.50
554 2.54 700.40 1355.00
555 2.74 702.00 1381.70
556 2.78 703.40 1369.40
557 2.84 704.60 1369.50
558 2.97 708.20 1384.30
559 3.22 710.60 1365.40
560 3.44 713.40 1376.90
561 3.42 717.20 1363.50
562 3.71 718.40 1365.40
563 3.88 720.60 1373.60
564 3.89 724.60 1397.20
565 4.24 729.30 1375.50
566 4.43 733.20 1362.00
567 4.51 735.60 1394.70
568 4.60 738.20 1393.60
569 4.72 741.30 1392.10
570 4.79 740.80 1379.00
571 4.95 740.80 1368.60
572 4.96 742.10 1370.60
573 4.81 742.60 1347.40
574 4.92 743.70 1360.30
575 4.94 746.60 1368.50
576 4.85 750.20 1387.70
577 4.98 750.70 1369.00
578 5.03 750.00 1347.50
579 4.94 750.80 1378.40
580 4.87 753.70 1392.30
581 4.73 755.30 1385.60
582 4.61 755.70 1370.80
583 4.82 758.10 1368.60
584 4.20 759.00 1372.80
585 3.89 760.20 1356.30
586 3.90 762.90 1369.40
587 3.27 762.70 1370.50
588 3.00 760.60 1394.90
589 2.75 758.30 1375.90
590 2.12 757.40 1365.90
591 1.26 759.20 1401.10
592 1.29 758.20 1406.60
593 1.73 762.40 1396.50
594 1.86 768.50 1407.30
595 1.63 774.80 1417.70
596 1.72 776.80 1401.30
597 1.13 780.90 1441.50
598 0.67 796.70 1462.60
599 0.19 806.40 1513.70
600 0.03 816.20 1632.30
601 0.13 829.50 1580.70
602 0.30 837.60 1552.00
603 0.21 843.00 1594.90
604 0.16 847.20 1627.70
605 0.18 848.60 1617.90
606 0.18 852.30 1661.70
607 0.18 854.80 1657.70
608 0.17 858.30 1651.30
609 0.12 861.40 1641.00
610 0.07 862.80 1664.30
611 0.05 862.00 1683.10
612 0.05 863.70 1724.40
613 0.06 864.50 1674.20
614 0.11 868.40 1685.20
615 0.15 871.60 1729.50
616 0.16 876.00 1716.00
617 0.16 879.90 1708.20
618 0.12 882.90 1732.30
619 0.16 887.40 1718.40
620 0.16 893.10 1739.60
621 0.15 899.40 1741.40
622 0.13 907.40 1767.40
623 0.14 915.00 1828.70
624 0.14 918.80 1871.40
625 0.15 923.30 1855.60
626 0.13 930.20 1858.70
627 0.10 938.00 1909.40
628 0.06 947.70 1918.00
629 0.04 956.80 1934.20
630 0.04 963.70 1954.10
631 0.04 969.70 1994.50
632 0.02 976.50 2101.90
633 0.01 982.40 2099.10
634 0.02 986.30 2128.10
635 0.01 994.80 2164.40
636 0.01 1001.60 2208.10
637 0.03 1009.90 2209.20
638 0.09 1019.50 2194.50
639 0.08 1028.40 2246.00
640 0.08 1034.30 2268.60
641 0.09 1039.60 2248.40
642 0.09 1046.20 2271.00
643 0.10 1052.30 2314.60
644 0.10 1059.40 2334.60
645 0.11 1068.10 2358.00
646 0.10 1077.00 2416.20
647 0.09 1083.60 2415.20
648 0.07 1090.70 2509.70
649 0.07 1097.20 2481.30
650 0.10 1100.00 2455.70
651 0.09 1103.90 2497.20
652 0.06 1109.30 2542.30
653 0.04 1116.40 2518.50
654 0.05 1123.10 2523.50
655 0.04 1131.00 2543.70
656 0.04 1137.70 2537.40
657 0.02 1145.00 2555.80
658 0.05 1151.40 2618.40
659 0.07 1154.50 2607.20
660 0.07 1160.70 2715.70
661 0.04 1165.70 2701.70
662 0.05 1171.90 2706.20
663 0.05 1189.70 2773.30
664 0.03 1198.30 2809.60
665 0.03 1205.00 2782.20
666 0.04 1211.90 2824.80
667 0.03 1218.40 2841.20
668 0.03 1223.60 2790.20
669 0.02 1227.60 2834.60
670 0.02 1231.70 2865.00
671 0.02 1241.50 2861.10
672 0.03 1253.30 2992.00
673 0.03 1266.70 2941.10
674 0.02 1273.00 2979.60
675 0.03 1279.30 3023.90
676 0.02 1284.60 3035.40
677 0.02 1288.80 2975.90
678 0.02 1294.30 3020.70
679 0.03 1301.10 3038.40
680 0.07 1309.30 3022.30
681 0.02 1318.10 3016.30
682 0.02 1325.20 3011.90
683 0.12 1333.90 3056.20
684 0.23 1339.60 3141.10
685 0.26 1346.30 3094.30
686 0.31 1352.30 3097.40
687 0.29 1359.80 3181.20
688 0.23 1366.00 3236.50
689 0.27 1374.50 3237.30
690 0.27 1381.60 3250.10
691 0.30 1388.20 3248.40
692 0.30 1395.10 3322.60
693 0.29 1401.00 3300.50
694 0.33 1407.50 3330.40
695 0.45 1415.30 3327.00
696 0.51 1421.30 3382.80
697 0.51 1431.90 3387.70
698 0.52 1434.80 3346.50
699 0.74 1446.70 3467.50
700 0.80 1457.60 3473.20
701 0.89 1467.60 3503.60
702 0.98 1477.00 3508.50
703 1.07 1485.40 3539.30
704 1.01 1493.80 3574.60
705 1.03 1503.20 3533.30
706 1.07 1512.30 3588.60
707 1.23 1518.10 3584.60
708 1.32 1525.80 3636.90
709 1.41 1538.20 3636.30
710 1.57 1540.20 3558.70
711 1.70 1548.70 3686.50
712 1.76 1558.00 3693.30
713 1.86 1569.00 3657.30
714 1.90 1580.30 3660.80
715 1.96 1589.80 3680.40

Solutions

Expert Solution

Using excel,

a. Z test

H0 : Vs Ha :

The output is obtained as:

Since the p value obtained for the test is 0.00 < 0.05.There is no sufficient evidence to support the null hypothesis.Hence, the null hypothesis may be rejected at 5% level of significance.

We may conclude that the population means for X2 and X3 are not equal.

b.F test for equality of variance of X2 and X3

H0:   

Since the p value obtained for the test is 0.00 < 0.05.There is no sufficient evidence to support the null hypothesis.Hence, the null hypothesis may be rejected at 5% level of significance.

We may conclude that the population variances for X2 and X3 are not equal.

c To test whether the variance of X1 is greater than 9.

H0 : vs Ha :

The appropriate test, here, would be chi square.Its test statistic is given by,

Here, s2 = Sample variance = 9.911 ............[=VAR(A2:A716) in excel]

= 9..........(given)

n = no. of observations = 715

Substituting the above values,

=786.3

p value for the test is obtained by the formula, CHIDIST(786.3,714) = 0.031 < 0.05

Since the p value obtained for the test is 0.031 < 0.05.There is no sufficient evidence to support the null hypothesis.Hence, the null hypothesis may be rejected at 5% level of significance.

We may conclude that the population variance of X1 is greater than 9.

d. ANOVA to test equality of means of X1,X2 and X3

H0 : vs H1: At least one of the means differ.

The output is obtained as:

Since the p value obtained for the test is 0.000 < 0.05.There is no sufficient evidence to support the null hypothesis.Hence, the null hypothesis may be rejected at 5% level of significance.

We may conclude that the population means of X1, X2 and X3 are not equal.The means differ significantly at 5% level.


Related Solutions

Let X1, X2, X3, and X4 be a random sample of observations from a population with...
Let X1, X2, X3, and X4 be a random sample of observations from a population with mean ? and variance ?2. Consider the following two point estimators of ?: b1= 0.30 X1 + 0.30 X2 + 0.30 X3 + 0.30 X4 and b2= 0.20 X1 + 0.40 X2 + 0.40 X3 + 0.20 X4 . Which of the following constraints is true? A. Var(b1)/Var(b2)=0.76 B. Var(b1)Var(b2) C. Var(b1)=Var(b2) D. Var(b1)>Var(b2)
Consider independent random variables X1, X2, and X3 such that X1 is a random variable having...
Consider independent random variables X1, X2, and X3 such that X1 is a random variable having mean 1 and variance 1, X2 is a random variable having mean 2 and variance 4, and X3 is a random variable having mean 3 and variance 9. (a) Give the value of the variance of X1 + (1/2)X2 + (1/3)X3 (b) Give the value of the correlation of Y = X1- X2 and Z = X2 + X3.
The following table provides data for 20 samples each of size five. Sample x1 x2 x3...
The following table provides data for 20 samples each of size five. Sample x1 x2 x3 x4 x5 1 4.960 4.946 4.950 4.956 4.958 2 4.958 4.927 4.935 4.940 4.950 3 4.971 4.929 4.965 4.952 4.938 4 4.940 4.982 4.970 4.953 4.960 5 4.964 4.950 4.953 4.962 4.956 6 4.969 4.951 4.955 4.966 4.954 7 4.960 4.944 4.957 4.948 4.951 8 4.969 4.949 4.963 4.952 4.962 9 4.984 4.928 4.960 4.943 4.955 10 4.970 4.934 4.961 4.940 4.965 11 4.975...
4.Maximize: Z = 2X1+ X2-3X3 Subject to: 2X1+ X2= 14 X1+ X2+ X3≥6 X1, X2, X3≥0...
4.Maximize: Z = 2X1+ X2-3X3 Subject to: 2X1+ X2= 14 X1+ X2+ X3≥6 X1, X2, X3≥0 Solve the problem by using the M-technique.
Using Y as the dependent variable and X1, X2, X3, X4 and X5 as the explanatory...
Using Y as the dependent variable and X1, X2, X3, X4 and X5 as the explanatory variables, formulate an econometric model for data that is (i) time series data (ii) cross-sectional data and (iii) panel data – (Hint: please specify the specific model here not its general form).
(a) Consider three positive integers, x1, x2, x3, which satisfy the inequality below: x1 +x2 +x3...
(a) Consider three positive integers, x1, x2, x3, which satisfy the inequality below: x1 +x2 +x3 =17. (1) Let’s assume each element in the sample space (consisting of solution vectors (x1, x2, x3) satisfying the above conditions) is equally likely to occur. For example, we have equal chances to have (x1, x2, x3) = (1, 1, 15) or (x1, x2, x3) = (1, 2, 14). What is the probability the events x1 +x2 ≤8occurs,i.e.,P(x1 +x2 ≤8|x1 +x2 +x3 =17andx1,x2,x3 ∈Z+)(Z+...
Let X1, X2, X3 be continuous random variables with joint pdf f(X1, X2, X3)= 2 if...
Let X1, X2, X3 be continuous random variables with joint pdf f(X1, X2, X3)= 2 if 1<X1<2 -1<X2<0 -X2-1<X3<0                         0 otherwise Find Cov(X2, X3)
Let X1,X2,X3 be i.i.d. N(0,1) random variables. Suppose Y1 = X1 + X2 + X3, Y2...
Let X1,X2,X3 be i.i.d. N(0,1) random variables. Suppose Y1 = X1 + X2 + X3, Y2 = X1 −X2, Y3 =X1 −X3. Find the joint pdf of Y = (Y1,Y2,Y3)′ using : Multivariate normal distribution properties.
We have a random sample of observations on X: x1, x2, x3, x4,…,xn. Consider the following...
We have a random sample of observations on X: x1, x2, x3, x4,…,xn. Consider the following estimator of the population mean: x* = x1/2 + x2/4 + x3/4. This estimator uses only the first three observations. a) Prove that x* is an unbiased estimator. b) Derive the variance of x* c) Is x* an efficient estimator? A consistent estimator? Explain.
Does the input requirement set V (y) = {(x1, x2, x3) | x1 + min {x2,...
Does the input requirement set V (y) = {(x1, x2, x3) | x1 + min {x2, x3} ≥ 3y, xi ≥ 0 ∀ i = 1, 2, 3} corresponds to a regular (closed and non-empty) input requirement set? Does the technology satisfies free disposal? Is the technology convex?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT