In: Finance
You decide to invest in a portfolio consisting of 11 percent Stock X, 53 percent Stock Y, and the remainder in Stock Z. Based on the following information, what is the standard deviation of your portfolio? State of Economy Probability of State Return if State Occurs of Economy Stock X Stock Y Stock Z Normal .76 10.70% 4.10% 13.10% Boom .24 18.00% 26.00% 17.50%
Stock X | |||||
Scenario | Probability | Return% | =rate of return% * probability | Actual return -expected return(A)% | (A)^2* probability |
Normal | 0.76 | 10.7 | 8.132 | -1.752 | 0.000233282 |
Boom | 0.24 | 18 | 4.32 | 5.548 | 0.0007387273 |
Expected return %= | sum of weighted return = | 12.45 | Sum=Variance Stock X= | 0.00097 | |
Standard deviation of Stock X% | =(Variance)^(1/2) | 3.12 | |||
Stock Y | |||||
Scenario | Probability | Return% | =rate of return% * probability | Actual return -expected return(A)% | (B)^2* probability |
Normal | 0.76 | 4.1 | 3.116 | -5.256 | 0.0020995407 |
Boom | 0.24 | 26 | 6.24 | 16.644 | 0.0066485457 |
Expected return %= | sum of weighted return = | 9.36 | Sum=Variance Stock Y= | 0.00875 | |
Standard deviation of Stock Y% | =(Variance)^(1/2) | 9.35 | |||
Stock Z | |||||
Scenario | Probability | Return% | =rate of return% * probability | Actual return -expected return(A)% | (C)^2* probability |
Normal | 0.76 | 13.1 | 9.956 | -1.056 | 8.47503E-05 |
Boom | 0.24 | 17.5 | 4.2 | 3.344 | 0.000268376 |
Expected return %= | sum of weighted return = | 14.16 | Sum=Variance Stock Z= | 0.00035 | |
Standard deviation of Stock Z% | =(Variance)^(1/2) | 1.88 | |||
Covariance Stock X Stock Y: | |||||
Scenario | Probability | Actual return% -expected return% for A(A) | Actual return% -expected return% For B(B) | (A)*(B)*probability | |
Normal | 0.76 | -1.7520 | -5.256 | 0.000699847 | |
Boom | 0.24 | 5.548 | 16.644 | 0.002216182 | |
Covariance=sum= | 0.002916029 | ||||
Correlation A&B= | Covariance/(std devA*std devB)= | 1 | |||
Covariance Stock X Stock Z: | |||||
Scenario | Probability | Actual return% -expected return% for A(A) | Actual return% -expected return% for C(C) | (A)*(C)*probability | |
Normal | 0.76 | -1.752 | -1.056 | 0.000140609 | |
Boom | 0.24 | 5.548 | 3.344 | 0.00044526 | |
Covariance=sum= | 0.000585869 | ||||
Correlation A&C= | Covariance/(std devA*std devC)= | 1 | |||
Covariance Stock Y Stock Z: | |||||
Scenario | Probability | Actual return% -expected return% For B(B) | Actual return% -expected return% for C(C) | (B)*(C)*probability | |
Normal | 0.76 | -5.256 | -1.056 | 0.000421826 | |
Boom | 0.24 | 16.644 | 3.344 | 0.001335781 | |
Covariance=sum= | 0.001757606 | ||||
Correlation B&C= | Covariance/(std devB*std devC)= | 1 | |||
Expected return%= | Wt Stock X*Return Stock X+Wt Stock Y*Return Stock Y+Wt Stock Z*Return Stock Z | ||||
Expected return%= | 0.11*12.45+0.53*9.36+0.36*14.16 | ||||
Expected return%= | 11.42 | ||||
Variance | =w2A*σ2(RA) + w2B*σ2(RB) + w2C*σ2(RC)+ 2*(wA)*(wB)*Cor(RA, RB)*σ(RA)*σ(RB) + 2*(wA)*(wC)*Cor(RA, RC)*σ(RA)*σ(RC) + 2*(wC)*(wB)*Cor(RC, RB)*σ(RC)*σ(RB) | ||||
Variance | =0.11^2*0.03118^2+0.53^2*0.09353^2+0.36^2*0.01879^2+2*(0.11*0.53*0.03118*0.09353*1+0.53*0.36*0.09353*0.01879*1+0.11*0.36*1*0.03118*0.01879) | ||||
Variance | 0.003572 | ||||
Standard deviation= | (variance)^0.5 | ||||
Standard deviation= | 5.98% |