Question

In: Mechanical Engineering

R22 is compressed adiabatically and reversibly from saturated vapor at -20 deg F to 200 psia....

R22 is compressed adiabatically and reversibly from saturated vapor at -20 deg F to 200 psia. Find the final temperature and the specific work done.

Solutions

Expert Solution


Related Solutions

Saturated propane vapor at 200 psia is fed to a well-insulated heat exchanger at a rate...
Saturated propane vapor at 200 psia is fed to a well-insulated heat exchanger at a rate of 2600 standard cubic feet per hour. The propane leaves the exchanger as a saturated liquid (a liquid at its boiling point) at the same pressure. Cooling water enters the exchanger at 70 oF. Flowing concurrently (in the same direction) with the propane. The temperature difference between the outlet streams (liquid propane and water) is 15 oF. Estimate the required flow rate (lbm/h) of...
Water at 80°F and 20 psia is heated in a chamber by mixing it with saturated...
Water at 80°F and 20 psia is heated in a chamber by mixing it with saturated water vapor at 20 psia. If both streams enter the mixing chamber at the same mass flow rate, determine the temperature and the quality of the exiting stream. Include a heat loss rate of 200 kW and a net mass flow rate of the combined streams of 4 lbm/s.
Steam is compressed to a saturated vapor state at constant pressure. The steam started at 2...
Steam is compressed to a saturated vapor state at constant pressure. The steam started at 2 MPa and 365 C. What work was required and what was the specific heat transfer? Please show work so I can actually learn!
A vapor-compression refrigeration cycle working with R22 contains a liquid-to-suction heat exchanger. The saturated liquid refrigerant...
A vapor-compression refrigeration cycle working with R22 contains a liquid-to-suction heat exchanger. The saturated liquid refrigerant at 40 °C leaving the condenser and entering the heat exchanger is used to superheat the saturated vapor refrigerant leaving the evaporator at 7 °C by 8 °C. If the compressor is capable of pumping 5 l/s of vapor refrigerant measured at the inlet to the compressor and the compression processes are considered isentropic in both cases listed below, determine; (a) The refrigerating capacity...
Q/ A vapor-compression refrigeration cycle working with R22 contains a liquid-to-suction heat exchanger. The saturated liquid...
Q/ A vapor-compression refrigeration cycle working with R22 contains a liquid-to-suction heat exchanger. The saturated liquid refrigerant at 40 °C leaving the condenser and entering the heat exchanger is used to superheat the saturated vapor refrigerant leaving the evaporator at 7 °C by 8 °C. If the compressor is capable of pumping 5 l/s of vapor refrigerant measured at the inlet to the compressor and the compression processes are considered isentropic in both cases listed below, determine; (a) The refrigerating...
air is compressed in an adiabatic and isentropic compressor from 14 psia and 60F to 210...
air is compressed in an adiabatic and isentropic compressor from 14 psia and 60F to 210 psia. Determine the outlet temperature [F] and the work consumed by this compressor per unit mas of air [Btu/lbm]. Assume constant specific heats at T=100F Please explain table look ups, thank you!
A certain VOC compound has measured vapor pressures equal to 0.1316 psia at 31.65° F, and...
A certain VOC compound has measured vapor pressures equal to 0.1316 psia at 31.65° F, and 0.2034 psia at 44.57° F. Determine the constants A and B in a Classius-Claperon type equation for estimating vapor pressures of this VOC. Use the equation to estimate the vapor pressure of the VOC at 77.0 deg F. Ans. 0.55 psia.
The capacity of a propane vapor-compression refrigeration system is 8 tons. Saturated vapor at 0°F enters...
The capacity of a propane vapor-compression refrigeration system is 8 tons. Saturated vapor at 0°F enters the compressor, and superheated vapor leaves at 120°F, 180 lbf/in.2 Heat transfer from the compressor to its surroundings occurs at a rate of 3.5 Btu per lb of refrigerant passing through the compressor. Liquid refrigerant enters the expansion valve at 85°F, 180 lbf/in.2 The condenser is water-cooled, with water entering at 65°F and leaving at 80°F with a negligible change in pressure. Determine (a)...
An air stream is saturated with a vapor (B) at 130F and 1 atm pressure. It...
An air stream is saturated with a vapor (B) at 130F and 1 atm pressure. It is cooled down to 80F where some of the B is condensed and separated from the vapor stream. The remaining vapor stream is then reheated back to 130F. a. What is the mole fraction of B in the air coming out of the process? b. For an inlet flow rate of 2000 ft3/min of air saturated with B, what would be the flow rate...
Methane is compressed adiabatically in a pipeline pumping station from 3500 kPa and 35°C to 5500...
Methane is compressed adiabatically in a pipeline pumping station from 3500 kPa and 35°C to 5500 kPa at a rate of 1.5 kg mol·s−1. If the compressor efficiency is 0.78, what is the power requirement of the compressor and what is the discharge temperature of the methane? ( if you could explaine it step by step )
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT