Question

In: Mechanical Engineering

The capacity of a propane vapor-compression refrigeration system is 8 tons. Saturated vapor at 0°F enters...

The capacity of a propane vapor-compression refrigeration system is 8 tons. Saturated vapor at 0°F enters the compressor, and superheated vapor leaves at 120°F, 180 lbf/in.2 Heat transfer from the compressor to its surroundings occurs at a rate of 3.5 Btu per lb of refrigerant passing through the compressor. Liquid refrigerant enters the expansion valve at 85°F, 180 lbf/in.2 The condenser is water-cooled, with water entering at 65°F and leaving at 80°F with a negligible change in pressure. Determine

(a) the compressor power input, in Btu/min
(b) the mass flow rate of cooling water through the condenser, in lb/min
(c) the coefficient of performance


Round answers to 3 significant digits.

Solutions

Expert Solution


Related Solutions

A company owns a refrigeration system whose refrigeration capacity is 200 tons (1 ton of refrigeration...
A company owns a refrigeration system whose refrigeration capacity is 200 tons (1 ton of refrigeration = 211 kJ/min), and you are to design a forced-air cooling system for fruits whose diameters do not exceed 7 cm under the following conditions: The fruits are to be cooled from 28°C to an average temperature of 8°C. The air temperature is to remain above -2°C and below 10°C at all times, and the velocity of air approaching the fruits must remain under...
A vapor-compression refrigeration cycle operates at steady state with Refrigerant 134a as the working fluid. Saturated...
A vapor-compression refrigeration cycle operates at steady state with Refrigerant 134a as the working fluid. Saturated vapor enters the compressor at 2 bar, and saturated liquid exits the condenser at 10 bar. The isentropic compressor efficiency is 80%. The mass flow rate of refrigerant is 7 kg/min. Determine: (a) the compressor power, in kW. (b) the refrigeration capacity, in tons. (c) the coefficient of performance.
A vapor-compression refrigeration cycle working with R22 contains a liquid-to-suction heat exchanger. The saturated liquid refrigerant...
A vapor-compression refrigeration cycle working with R22 contains a liquid-to-suction heat exchanger. The saturated liquid refrigerant at 40 °C leaving the condenser and entering the heat exchanger is used to superheat the saturated vapor refrigerant leaving the evaporator at 7 °C by 8 °C. If the compressor is capable of pumping 5 l/s of vapor refrigerant measured at the inlet to the compressor and the compression processes are considered isentropic in both cases listed below, determine; (a) The refrigerating capacity...
Q/ A vapor-compression refrigeration cycle working with R22 contains a liquid-to-suction heat exchanger. The saturated liquid...
Q/ A vapor-compression refrigeration cycle working with R22 contains a liquid-to-suction heat exchanger. The saturated liquid refrigerant at 40 °C leaving the condenser and entering the heat exchanger is used to superheat the saturated vapor refrigerant leaving the evaporator at 7 °C by 8 °C. If the compressor is capable of pumping 5 l/s of vapor refrigerant measured at the inlet to the compressor and the compression processes are considered isentropic in both cases listed below, determine; (a) The refrigerating...
design a vapor compression refrigeration system that will maintain the refrigerated space at -15c while operating...
design a vapor compression refrigeration system that will maintain the refrigerated space at -15c while operating in an environment at 20c using refrigerant -134a as the working fluid (By EES )please
There is a vapor compression type refrigeration cycle using the refrigerant HFC 134 a. In the...
There is a vapor compression type refrigeration cycle using the refrigerant HFC 134 a. In the condenser, it is isostatically cooled, the condensation temperature is 50 ° C., and the condenser outlet is the compressed liquid at 45 ° C. In the evaporator, it is isothermally heated, the evaporation temperature is 10 ° C. and the outlet of the evaporator is heated steam at 15 ° C. When the expansion valve performs isenthalpic expansion, and the adiabatic efficiency of the...
Saturated water vapor at 300°F enters a compressor operating at steady state with a mass flow...
Saturated water vapor at 300°F enters a compressor operating at steady state with a mass flow rate of 5 lb/s and is compressed adiabatically to 750 lbf/in.2 If the power input is 2150 hp, determine for the compressor: (a) the percent isentropic compressor efficiency and (b) the rate of entropy production, in hp/°R. Ignore kinetic and potential energy effects.
Saturated water vapor at 300°F enters a compressor operating at steady state with a mass flow...
Saturated water vapor at 300°F enters a compressor operating at steady state with a mass flow rate of 5 lb/s and is compressed adiabatically to 650 lbf/in.2 If the power input is 2150 hp, determine for the compressor: (a) the percent isentropic compressor efficiency and (b) the rate of entropy production, in hp/°R. Ignore kinetic and potential energy effects.
Saturated water vapor at 300°F enters a compressor operating at steady state with a mass flow...
Saturated water vapor at 300°F enters a compressor operating at steady state with a mass flow rate of 5 lb/s and is compressed adiabatically to 650 lbf/in.2 If the power input is 2150 hp, determine for the compressor: (a) the percent isentropic compressor efficiency and (b) the rate of entropy production, in hp/°R. Ignore kinetic and potential energy effects.
Refrigerant 134a is the working fluid in a vapor-compression heat pump system with a heating capacity...
Refrigerant 134a is the working fluid in a vapor-compression heat pump system with a heating capacity of 60,000 Btu/h. The condenser operates at 180 lbf/in.2, and the evaporator temperature is 0°F. The refrigerant is a saturated vapor at the evaporator exit and a liquid at 110°F at the condenser exit. Pressure drops in the flows through the evaporator and condenser are negligible. The compression process is adiabatic, and the temperature at the compressor exit is 180°F. Determine (a) the mass...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT