In: Statistics and Probability
The following sample observations were randomly selected. (Do not round the intermediate values. Negative amount should be indicated by a minus sign. Round your answers to 3 decimal places.)
| X: | 6 | 5 | 3 | 6 | 9 |
| Y: | 4 | 6 | 5 | 1 | 12 |
Determine the 0.99 confidence interval for the mean predicted when x = 6.
Determine the 0.99 prediction interval for an individual predicted when x = 6.
using excel>Addin>phstat>multiple sample test >Regression
we have
| Simple Linear Regression Analysis | ||||||
| Regression Statistics | ||||||
| Multiple R | 0.5884 | |||||
| R Square | 0.3462 | |||||
| Adjusted R Square | 0.1283 | |||||
| Standard Error | 3.7695 | |||||
| Observations | 5 | |||||
| ANOVA | ||||||
| df | SS | MS | F | Significance F | ||
| Regression | 1 | 22.5723 | 22.5723 | 1.5886 | 0.2966 | |
| Residual | 3 | 42.6277 | 14.2092 | |||
| Total | 4 | 65.2000 | ||||
| Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
| Intercept | -0.7553 | 5.3167 | -0.1421 | 0.8960 | -17.6754 | 16.1648 |
| x | 1.0957 | 0.8694 | 1.2604 | 0.2966 | -1.6710 | 3.8625 |
| Confidence Interval Estimate | |
| Data | |
| X Value | 6 |
| Confidence Level | 99% |
| Intermediate Calculations | |
| Sample Size | 5 |
| Degrees of Freedom | 3 |
| t Value | 5.840909 |
| XBar, Sample Mean of X | 5.8 |
| Sum of Squared Differences from XBar | 18.8 |
| Standard Error of the Estimate | 3.769512 |
| h Statistic | 0.202128 |
| Predicted Y (YHat) | 5.819149 |
| For Average Y | |
| Interval Half Width | 9.8987 |
| Confidence Interval Lower Limit | -4.0796 |
| Confidence Interval Upper Limit | 15.71786 |
| For Individual Response Y | |
| Interval Half Width | 24.1402 |
| Prediction Interval Lower Limit | -18.3211 |
| Prediction Interval Upper Limit | 29.95935 |
a )the 0.99 confidence interval for the mean predicted when x = 6 is (-4.0796 ,15.71786)
b ) the 0.99 prediction interval for an individual predicted when x = 6. is (-18.3211 ,29.95935)