In: Statistics and Probability
The following sample observations were randomly selected. (Do not round the intermediate values. Negative amount should be indicated by a minus sign. Round your answers to 3 decimal places.)
X: | 6 | 5 | 3 | 6 | 9 |
Y: | 4 | 6 | 5 | 1 | 12 |
Determine the 0.99 confidence interval for the mean predicted when x = 6.
Determine the 0.99 prediction interval for an individual predicted when x = 6.
using excel>Addin>phstat>multiple sample test >Regression
we have
Simple Linear Regression Analysis | ||||||
Regression Statistics | ||||||
Multiple R | 0.5884 | |||||
R Square | 0.3462 | |||||
Adjusted R Square | 0.1283 | |||||
Standard Error | 3.7695 | |||||
Observations | 5 | |||||
ANOVA | ||||||
df | SS | MS | F | Significance F | ||
Regression | 1 | 22.5723 | 22.5723 | 1.5886 | 0.2966 | |
Residual | 3 | 42.6277 | 14.2092 | |||
Total | 4 | 65.2000 | ||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
Intercept | -0.7553 | 5.3167 | -0.1421 | 0.8960 | -17.6754 | 16.1648 |
x | 1.0957 | 0.8694 | 1.2604 | 0.2966 | -1.6710 | 3.8625 |
Confidence Interval Estimate | |
Data | |
X Value | 6 |
Confidence Level | 99% |
Intermediate Calculations | |
Sample Size | 5 |
Degrees of Freedom | 3 |
t Value | 5.840909 |
XBar, Sample Mean of X | 5.8 |
Sum of Squared Differences from XBar | 18.8 |
Standard Error of the Estimate | 3.769512 |
h Statistic | 0.202128 |
Predicted Y (YHat) | 5.819149 |
For Average Y | |
Interval Half Width | 9.8987 |
Confidence Interval Lower Limit | -4.0796 |
Confidence Interval Upper Limit | 15.71786 |
For Individual Response Y | |
Interval Half Width | 24.1402 |
Prediction Interval Lower Limit | -18.3211 |
Prediction Interval Upper Limit | 29.95935 |
a )the 0.99 confidence interval for the mean predicted when x = 6 is (-4.0796 ,15.71786)
b ) the 0.99 prediction interval for an individual predicted when x = 6. is (-18.3211 ,29.95935)