In: Finance
What is next year's dividend or D1 if the dividend growth rate in year 1 is 25%, in year 2 is 15%, and in year 3 is 10%. After year 3 the dividend is expected to grow at a constant rate of 6% indefinitely. The required return is 12% per year, while the current stock price is $27.94
D1 is $ 1.50
Step-1:Calculation of last paid dividend | |||||||
As per dividend discount model, current share price is the present value of future dividends. | |||||||
Present value of 3 years dividend: | |||||||
Year | Dividend | Discount factor | Present value | ||||
a | b | c=1.12^-a | d=b*c | ||||
1 | $ 1.25 | 0.892857 | $ 1.12 | ||||
2 | $ 1.44 | 0.797194 | $ 1.15 | ||||
3 | $ 1.58 | 0.71178 | $ 1.13 | ||||
Total | $ 3.39 | ||||||
Present value of dividend of 4 years thereafter | = | D4*(1+g)/(Ke-g)*DF4 | Where, | ||||
= | $ 19.88 | D3 | = | $ 1.58 | |||
g | = | 6% | |||||
Ke | = | 12% | |||||
DF3 | = | 0.71178 | |||||
Present value of all future dividends | = | $ 3.39 | + | $ 19.88 | |||
= | $ 23.27 | ||||||
Last paid dividend | = | $ 27.94 | / | $ 23.27 | |||
= | $ 1.20 | ||||||
Step-2:Dividend of next year | |||||||
Dividend for the coming year | = | $ 1.20 | * | 1.25 | |||
= | $ 1.50 |