In: Statistics and Probability
Data for a sample of 30 apartments in a particular neighborhood are provided in the worksheet. You want to see if there is a direct relationship between Size of the Apartment and Rent.
| Rent | Size | 
| 950 | 850 | 
| 1500 | 1450 | 
| 1150 | 1085 | 
| 1400 | 1232 | 
| 950 | 718 | 
| 1700 | 1485 | 
| 1550 | 1136 | 
| 935 | 726 | 
| 875 | 700 | 
| 1050 | 956 | 
| 1400 | 1100 | 
| 1650 | 1500 | 
| 1875 | 1985 | 
| 1800 | 1674 | 
| 1395 | 1223 | 
| 1375 | 1225 | 
| 1100 | 1300 | 
| 1500 | 1345 | 
| 1200 | 1150 | 
| 1150 | 896 | 
| 1100 | 1361 | 
| 1150 | 1040 | 
| 1200 | 755 | 
| 800 | 1000 | 
| 850 | 1200 | 
| 500 | 650 | 
| 900 | 1100 | 
| 1000 | 900 | 
| 1025 | 1000 | 
| 900 | 953 | 
Approximately what percentage of the variation in Rent is
explained by the regression model you derived?
Place your answer, rounded to 1 decimal place.
We need to find the coefficient of determination r2, which is the square of the correlation coefficient r.
To calculate pearsons co efficient r

From the Given data, the following is calculated (Tables given at the end)
SUM (x) = 35930, SUM (y) = 33695, SUM (xy) = 42732795,
SUM (x2) = 46125250, (SUM x)2 = (35930)2= 1290964900
SUM (y2) = 40580157, (SUM y)2 = (33695)2 = 1135353025
SUM (x) * SUM (y) = 35930 x 33695 = 1210661350
n = 30
Substituting these in the equation for r, we get


Therefore r2 = 0.817384 * 0.817384 = 0.668 or 66.8%
Therefore, approximately 66.8% of the variation in Rent is explained by the regression model.
___________________________________
| Count | x | y | xy | x2 | y2 | 
| 1 | 950 | 850 | 807500 | 902500 | 722500 | 
| 2 | 1500 | 1450 | 2175000 | 2250000 | 2102500 | 
| 3 | 1150 | 1085 | 1247750 | 1322500 | 1177225 | 
| 4 | 1400 | 1232 | 1724800 | 1960000 | 1517824 | 
| 5 | 950 | 718 | 682100 | 902500 | 515524 | 
| 6 | 1700 | 1485 | 2524500 | 2890000 | 2205225 | 
| 7 | 1550 | 1136 | 1760800 | 2402500 | 1290496 | 
| 8 | 935 | 726 | 678810 | 874225 | 527076 | 
| 9 | 875 | 700 | 612500 | 765625 | 490000 | 
| 10 | 1050 | 956 | 1003800 | 1102500 | 913936 | 
| 11 | 1400 | 1100 | 1540000 | 1960000 | 1210000 | 
| 12 | 1650 | 1500 | 2475000 | 2722500 | 2250000 | 
| 13 | 1875 | 1985 | 3721875 | 3515625 | 3940225 | 
| 14 | 1800 | 1674 | 3013200 | 3240000 | 2802276 | 
| 15 | 1395 | 1223 | 1706085 | 1946025 | 1495729 | 
| 16 | 1375 | 1225 | 1684375 | 1890625 | 1500625 | 
| 17 | 1100 | 1300 | 1430000 | 1210000 | 1690000 | 
| 18 | 1500 | 1345 | 2017500 | 2250000 | 1809025 | 
| 19 | 1200 | 1150 | 1380000 | 1440000 | 1322500 | 
| 20 | 1150 | 896 | 1030400 | 1322500 | 802816 | 
| 21 | 1100 | 1361 | 1497100 | 1210000 | 1852321 | 
| 22 | 1150 | 1040 | 1196000 | 1322500 | 1081600 | 
| 23 | 1200 | 755 | 906000 | 1440000 | 570025 | 
| 24 | 800 | 1000 | 800000 | 640000 | 1000000 | 
| 25 | 850 | 1200 | 1020000 | 722500 | 1440000 | 
| 26 | 500 | 650 | 325000 | 250000 | 422500 | 
| 27 | 900 | 1100 | 990000 | 810000 | 1210000 | 
| 28 | 1000 | 900 | 900000 | 1000000 | 810000 | 
| 29 | 1025 | 1000 | 1025000 | 1050625 | 1000000 | 
| 30 | 900 | 953 | 857700 | 810000 | 908209 | 
| Total | 35930.00 | 33695.00 | 42732795.00 | 46125250.00 | 40580157.00 | 
____________________________________________________