Question

In: Statistics and Probability

Let X be a continuous random variable having a normal probability distribution with mean µ =...

Let X be a continuous random variable having a normal probability distribution with mean µ = 210 and standard deviation σ = 15.


(a) Draw a sketch of the density function of X.
(b) Find a value x∗ which cuts left tail of area 0.25 .
(c) Find a value y∗ which cuts right tail of area 0.30.
(d) Find a and b such that p(a ≤ X ≤ b) = 0.78.

Solutions

Expert Solution

thank you.


Related Solutions

Let X be a continuous random variable following normal distribution with mean value of: (a is...
Let X be a continuous random variable following normal distribution with mean value of: (a is 1) and standard deviation of b is 1/10 ,  What is the mode of X? (1 mark)  What is median of X? (1 mark)  What is ?(? > ?)? (1mark)  What is ?(? − ? < ? < ? + ?)? (1 mark)  What is ?(? − 1.96? < ? < ? + 1.96?))? (1mark)
Let X be a continuous random variable following normal distribution with mean value of: (a is...
Let X be a continuous random variable following normal distribution with mean value of: (a is the last digit of your student number) and standard deviation of b (b is the last digit of your student number divided by 10), a=9 b=9/10 What is the mode of X? What is median of X? What is P(X>a)? What is P(a-b<X<a+b)? What is P(a-1.96b<X<a+1.96b)?
1) Let   x be a continuous random variable that follows a normal distribution with a mean...
1) Let   x be a continuous random variable that follows a normal distribution with a mean of 321 and a standard deviation of 41. (a) Find the value of   x > 321 so that the area under the normal curve from 321 to x is 0.2224. Round your answer to the nearest integer. The value of   x is_______ (b) Find the value of x so that the area under the normal curve to the right of x is 0.3745. Round...
2] Let x be a continuous random variable that has a normal distribution with μ =...
2] Let x be a continuous random variable that has a normal distribution with μ = 48 and σ = 8 . Assuming n N ≤ 0.05 , find the probability that the sample mean, x ¯ , for a random sample of 16 taken from this population will be between 49.64 and 52.60 . Round your answer to four decimal places.
Let x be a continuous random variable that has a normal distribution with μ = 60...
Let x be a continuous random variable that has a normal distribution with μ = 60 and σ = 12. Assuming n ≤ 0.05N, where n = sample size and N = population size, find the probability that the sample mean, x¯, for a random sample of 24 taken from this population will be between 54.91 and 61.79. Let x be a continuous random variable that has a normal distribution with μ = 60 and σ = 12. Assuming n...
Let the random variable X follow a normal distribution with a mean of μ and a...
Let the random variable X follow a normal distribution with a mean of μ and a standard deviation of σ. Let 1 be the mean of a sample of 36 observations randomly chosen from this population, and 2 be the mean of a sample of 25 observations randomly chosen from the same population. a) How are 1 and 2 distributed? Write down the form of the density function and the corresponding parameters. b) Evaluate the statement: ?(?−0.2?< ?̅1 < ?+0.2?)<?(?−0.2?<...
Let be a continuous random variable that has a normal distribution with μ = 48 and...
Let be a continuous random variable that has a normal distribution with μ = 48 and σ = 8. Assuming , n/N ≤ 0.05, find the probability that the sample mean, x , for a random sample of 16 taken from this population will be more than 45.30 . Round your answer to four decimal places.
Given a random variable X having a normal distribution with μ=50, and σ =10. The probability...
Given a random variable X having a normal distribution with μ=50, and σ =10. The probability that Z assumes a value between 45 and 62 is: ___________.
Let z denote a random variable having a normal distribution with ? = 0 and ?...
Let z denote a random variable having a normal distribution with ? = 0 and ? = 1. Determine each of the probabilities below. (Round all answers to four decimal places.) (a) P(z < 0.3) =   (b) P(z < -0.3) =   (c) P(0.40 < z < 0.85) =   (d) P(-0.85 < z < -0.40) =   (e) P(-0.40 < z < 0.85) =   (f) P(z > -1.26) =   (g) P(z < -1.5 or z > 2.50) =
Let x be a continuous random variable that follows a distribution skewed to the left with...
Let x be a continuous random variable that follows a distribution skewed to the left with ?= 92 and ?=15. Assuming n/N <= .05, find the probability that the sample mean, x bar, for a random sample of 62 taken from this population will be (ROUND ANSWERS TO FOUR DECIMAL PLACES): a) less than 81.5 P(less that 81.5)= b) greater than 89.7 P(greater than 89.7)= Please show your work.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT