Question

In: Math

Solve the LP problem. If no optimal solution exists, indicate whether the feasible region is empty...

Solve the LP problem. If no optimal solution exists, indicate whether the feasible region is empty or the objective function is unbounded. HINT [See Example 1.] (Enter EMPTY if the region is empty. Enter UNBOUNDED if the function is unbounded.)

Minimize c = 0.2x + 0.3y subject to

0.2x + 0.1y 1
0.15x + 0.3y 1.5
10x + 10y 80
x ≥ 0, y ≥ 0.
c =
(x, y) =

Solutions

Expert Solution


Related Solutions

Solve the LP problem. If no optimal solution exists because there is no Solution Set, enter...
Solve the LP problem. If no optimal solution exists because there is no Solution Set, enter EMPTY. If no optimal solution exists because the region is unbounded, enter UNBOUNDED. Note that an unbounded region can still have an optimal solution while a bounded region is guaranteed to have optimal solutions. HINT [See Example 1.] Maximize and minimize p = x + 2y subject to x + y ≥ 4 x + y ≤ 10 x − y ≤ 4 x...
Solve the LP problem. If no optimal solution exists because there is no Solution Set, enter...
Solve the LP problem. If no optimal solution exists because there is no Solution Set, enter EMPTY. If no optimal solution exists because the region is unbounded, enter UNBOUNDED. Note that an unbounded region can still have an optimal solution while a bounded region is guaranteed to have optimal solutions. HINT [See Example 1.] Minimize c = 2x − 2y subject to x 6 ≤ y y ≤ 2x 3 x + y ≥ 10 x + 2y ≤ 35...
Distinguish between basic feasible solution, feasible solution and optimal solution of a linear programming problem. Solve...
Distinguish between basic feasible solution, feasible solution and optimal solution of a linear programming problem. Solve the following LPP graphically: Y=q1+4q2 Subject to 2q1+6q2<=36 2q1+2q2<=16 4q1+2q2<=28 q1,q2>=0
Solve the given linear programming problem using the simplex method. If no optimal solution exists, indicate...
Solve the given linear programming problem using the simplex method. If no optimal solution exists, indicate whether the feasible region is empty or the objective function is unbounded. (Enter EMPTY if the feasible region is empty and UNBOUNDED if the objective function is unbounded.) Minimize c = x + y + z + w subject to x + y ≥ 80 x + z ≥ 60 x + y − w ≤ 50 y + z − w ≤ 50...
1) Solve the following problem graphically. Indicate (a) whether or not the problem is feasible, (b)...
1) Solve the following problem graphically. Indicate (a) whether or not the problem is feasible, (b) whether or not the problem has an optimal solution, and (c) whether or not the problem is unbounded. If there is a unique optimal solution, specify the variable values for this solution. If there are 2 alternative optimal solutions, give the values for three different optimal solutions. max 9x1 + 3x2 s.t. x2 ≤ 125   − x1 + 2x2 ≤ 170 3x1 + x2...
Graph the following LP problem and indicate the optimal solution point: Maximize profit= $3X + 2Y...
Graph the following LP problem and indicate the optimal solution point: Maximize profit= $3X + 2Y Subject to 2X+ Y ≤ 150 2X + 3Y ≤ 300 a) Does the optimal solution change if the profit per unit of X changes to $4.50? b ) What happens if the profit function should have been $3X + 3Y? I need help solving this problem using solver in excel
solve the following LP. Formulate and algebraically solve the problem. what is the new optimal z...
solve the following LP. Formulate and algebraically solve the problem. what is the new optimal z value show that the current basis is optimal max z=65x1+25x2+20x3 8x1+6x2+x3<=48 4x1+2x2+1.5x3<=20 2x1+1.5x2+0.5x3<=8 x2<=5 x1,x2,x3>=0
For the following LP problem, determine the optimal solution by the graphical solution method. Min Z=...
For the following LP problem, determine the optimal solution by the graphical solution method. Min Z= 3x1+2x2 Subject to 2x1+x2 >10                    -3x1+2x2 < 6                      X1+x2 > 6                      X1,x1 > 0 Graph and shade the feasible region
Please turn in the solution for this problem. (No need to solve the LP) The MSS...
Please turn in the solution for this problem. (No need to solve the LP) The MSS Company, which manufacturers a new instant salad machine, has $350,000 to spend on advertising. The product is only to be test marketed initially in the Dallas area. The money is to be spent on a television advertising campaign for the Super Bowl weekend (Friday, Saturday, and Sunday.) The company has three options of advertisement available: daytime advertising, evening news advertising, and the Super Bowl....
Solve the LP problem using graphical method. Determine the optimal values of the decision variables and...
Solve the LP problem using graphical method. Determine the optimal values of the decision variables and compute the objective function. Maximize Z = 2A + 10B Subject to 10A + 4B ≥ 40    A + 6B ≥ 24                A + 2B ≤ 14    A, B  ≥ 0 with soln pls thank you!
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT