Question

In: Advanced Math

solve the following LP. Formulate and algebraically solve the problem. what is the new optimal z...

solve the following LP. Formulate and algebraically solve the problem.

what is the new optimal z value

show that the current basis is optimal

max z=65x1+25x2+20x3

8x1+6x2+x3<=48

4x1+2x2+1.5x3<=20

2x1+1.5x2+0.5x3<=8

x2<=5

x1,x2,x3>=0

Solutions

Expert Solution

max z = 65x1 + 25x2 + 20x3

8x1 + 6x2 + x3 <= 48

4x1 + 2x2 + 1.5x3 <= 20

2 x1 + 1.5x2 + 0.5x3 <= 8

x2 <= 5

x1,x2,x3,x4 >= 0

now we can add slack variables to get equations from inequalities.

Equations from given inequalities.

8x1 + 6x2 + x3 + s1 = 48

4x1 + 2x2 + 1.5x3 + s2 = 20

2 x1 + 1.5x2 + 0.5x3 + s3 = 8

x2 + s4 = 5

And - 65X1 - 25X2 - 20X3 + z = 0

Now we can matrix representation of initial tableau for above equations.

X1     X2      X3      S1     S2     S3     S4     p            

8        6      1        1      0      0      0      0      48    

4        2      3/2     0      1      0      0      0      20    

2      3/2   1/2    0      0      1      0      0      8     

0        1         0       0      0      0      1      0      5     

-65    -25    -20    0      0      0      0      1      0

Here the most negative element in the bottom row will indicates the pivot element so here -65 ,so we have in column 1 so I am taking 1st column as a pivot column and for pivot row the least positive result when last column divided by pivot column will indicates so

i.e. +min (48/8 , 20/4 , 8/2) = 8/2 so 3rd row as a pivot row.

R3-> R3 (1/2)

X1     X2      X3      S1     S2     S3     S4     p            

8        6      1        1      0      0      0      0      48    

4        2      3/2     0      1      0      0      0      20    

1      3/4   1/4    0      0     1/2   0      0      4     

0        1         0       0      0      0      1      0      5     

-65    -25    -20    0      0      0      0      1      0

R1-> R1 - 8R3   R2-> R2 - 4R3      R5-> R5 + 65R3

X1     X2      X3      S1     S2     S3     S4     p            

0        0      -1        1      0      -4     0      0      16    

0      -1     1/2      0      1      -2     0      0      4     

1      3/4    1/4     0      0      1/2    0      0      4     

0         1        0       0       0       0       1      0      5     

0      95/4   -15/4 0      0      65/2   0      1      260

Here the most negative element in the bottom row will indicates the pivot element so here -15/4 ,so we have in column 3rd so I am taking 3rd column as a pivot column and for pivot row the least positive result when last column divided by pivot column will indicates so

i.e. +min (4/(1/2) , 4/(1/4)) = 4/(1/2) so 2nd row as a pivot row.

R2-> R2 (2)

X1     X2      X3      S1     S2     S3     S4     p            

0        0      -1        1      0      -4     0      0      16    

0      -2      1        0      2      -4     0      0      8

1      3/4    1/4     0      0      1/2    0      0      4     

0         1        0       0       0       0       1      0      5     

0      95/4   -15/4 0      0      65/2   0      1      260

R1-> R1 + R2   R3-> R3 - (1/4)R2      R5-> R5 + (15/4)R2

X1     X2      X3      S1     S2       S3     S4     p            

0     -2       0      1       2      -8     0      0      24    

0      -2       1     0      2      -4     0      0      8     

1      5/4     0      0   -1/2   3/2     0      0      2     

0         1      0      0      0        0        1      0      5     

0      65/4   0      0   15/2   35/2   0      1      290

So now we did not have any negative elements in bottom row so we can stop the iterations. Now the optimum solution is Maximum Z = 290   At    x1= 2 , x2 = 0 , x3 = 8


Related Solutions

solve the following LP. Formulate and algebraically solve the problem. Show all steps. what is the...
solve the following LP. Formulate and algebraically solve the problem. Show all steps. what is the new optimal z value max z=65x1+35x2+20x3 8x1+6x2+x3<=48 4x1+2x2+1.5x3<=20 2x1+1x2+0.5x3<=8 x2<=5 x1,x2,x3>=0 interpret the meaning of the shadow prices
Required: Formulate and solve the LP Relaxation of the problem. Solve it graphically, and round down...
Required: Formulate and solve the LP Relaxation of the problem. Solve it graphically, and round down to find a feasible solution. Explain/show what excel parameters and cells should be entered into the excel to come up with the answer. Consider the following all-integer linear program: ??? 10?1 + 3?2 ?.?. 6?1 + 7?2 ≤ 40 3?1 + 1?2 ≤ 11 ?1,?2 ≥ 0 and integer
For the following LP problem, determine the optimal solution by the graphical solution method. Min Z=...
For the following LP problem, determine the optimal solution by the graphical solution method. Min Z= 3x1+2x2 Subject to 2x1+x2 >10                    -3x1+2x2 < 6                      X1+x2 > 6                      X1,x1 > 0 Graph and shade the feasible region
Solve the LP problem. If no optimal solution exists because there is no Solution Set, enter...
Solve the LP problem. If no optimal solution exists because there is no Solution Set, enter EMPTY. If no optimal solution exists because the region is unbounded, enter UNBOUNDED. Note that an unbounded region can still have an optimal solution while a bounded region is guaranteed to have optimal solutions. HINT [See Example 1.] Maximize and minimize p = x + 2y subject to x + y ≥ 4 x + y ≤ 10 x − y ≤ 4 x...
Solve the LP problem. If no optimal solution exists because there is no Solution Set, enter...
Solve the LP problem. If no optimal solution exists because there is no Solution Set, enter EMPTY. If no optimal solution exists because the region is unbounded, enter UNBOUNDED. Note that an unbounded region can still have an optimal solution while a bounded region is guaranteed to have optimal solutions. HINT [See Example 1.] Minimize c = 2x − 2y subject to x 6 ≤ y y ≤ 2x 3 x + y ≥ 10 x + 2y ≤ 35...
Solve the LP problem. If no optimal solution exists, indicate whether the feasible region is empty...
Solve the LP problem. If no optimal solution exists, indicate whether the feasible region is empty or the objective function is unbounded. HINT [See Example 1.] (Enter EMPTY if the region is empty. Enter UNBOUNDED if the function is unbounded.) Minimize c = 0.2x + 0.3y subject to 0.2x + 0.1y ≥ 1 0.15x + 0.3y ≥ 1.5 10x + 10y ≥ 80 x ≥ 0, y ≥ 0. c = (x, y) =
Solve the LP problem using graphical method. Determine the optimal values of the decision variables and...
Solve the LP problem using graphical method. Determine the optimal values of the decision variables and compute the objective function. Maximize Z = 2A + 10B Subject to 10A + 4B ≥ 40    A + 6B ≥ 24                A + 2B ≤ 14    A, B  ≥ 0 with soln pls thank you!
Solve this linear programming (LP) problem using the transportation method. Find the optimal transportation plan and...
Solve this linear programming (LP) problem using the transportation method. Find the optimal transportation plan and the minimum cost. (Leave no cells blank - be certain to enter "0" wherever required. Omit the "$" sign in your response.) Minimize 8x11 + 2x12 + 5x13 + 2x21 + x22 + 3x23 + 7x31 + 2x32 + 6x33 Subject to x11 + x12 + x13 = 90 x21 + x22 + x23 = 105 x31 + x32 + x33 = 105 x11...
Formulate the following problem as an LP problem. Glassco manufactures wine glasses, beer glasses, champagne glasses...
Formulate the following problem as an LP problem. Glassco manufactures wine glasses, beer glasses, champagne glasses and whiskey glasses. Each type of glass uses time in the molding shop, time in the packaging shop and a certain amount of glass. The resources required to make one of each type of glass are given below.    At present, 600 minutes of molding time, 400 minutes of packaging time and 500 oz of glass are available per week. Glassco has a contract that...
Find the set of ALL optimal solutions to the following LP: min z= 3x1−2x2 subject to...
Find the set of ALL optimal solutions to the following LP: min z= 3x1−2x2 subject to 3x1+x2≤12 3x1−2x2−x3= 12 x1≥2 x1, x2, x3≥0
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT