Question

In: Mechanical Engineering

Determine the resolution of a manometer required to measure the velocity of air at 50 m/s...

Determine the resolution of a manometer required to measure the velocity of air at 50 m/s using a pitot tube and a mercury manometer to achieve an uncertainty in the velocity of 1.5 m/s. The air flows at 20 degrees C, 101.3 KPa demonstrate your result using the formulation of kline and McClintock.

Solutions

Expert Solution


Related Solutions

A rock is thrown into the air with an initial velocity of 40 m/s and 60...
A rock is thrown into the air with an initial velocity of 40 m/s and 60 degrees above the horizontal. (a) What is the time when the velocity makes 45 degrees above the horizontal? (b) What is the time when the velocity makes 45 degrees below the horizontal? (c) Does it exist when the velocity makes zero degrees with the horizontal? If yes, when? (d) Does it exist when the velocity makes 90 (or -90) degrees with the horizontal? If...
Air flows through a 0.25-m-diameter duct. At the inlet the velocity is 300 m/s, and the...
Air flows through a 0.25-m-diameter duct. At the inlet the velocity is 300 m/s, and the stagnation temperature is 90°C. If the Mach number at the exit is 0.3, determine the direction and the rate of heat transfer. For the same conditions at the inlet, determine the amount of heat that must be transferred to the system if the flow is to be sonic at the exit of the duct.
Air at 20°C and a velocity of 8 m/s flows over the 4-m length of a...
Air at 20°C and a velocity of 8 m/s flows over the 4-m length of a 4-m wide single surface of a square plate whose temperature is 80°C. (For properties of air, use k = 0.02735 W/m·K, Pr = 0.7228, ν = 1.798 x 10-5 m2 /s ) Given the above information, do the calculations to answer the two MC questions below. Please clearly show/discuss your solution method and calculations. A. __________The rate of heat transfer, Q̇ , from this...
An airplane flying in the air with a constant velocity of 240 m/s horizontally experiences a...
An airplane flying in the air with a constant velocity of 240 m/s horizontally experiences a force due to gravity, directed downwards with a magnitude of 4×10^6 N, and a force generated by the engines, directed forwards with a magnitude of 3 × 10^6 N. a. In light of Newton’s first law, why must there be a third force acting on the airplane? Calculate the magnitude of this third force, and explain its physical origin. Draw this third force on...
Consider atmospheric air at a velocity of V = 20 m/s and a temperature of T=...
Consider atmospheric air at a velocity of V = 20 m/s and a temperature of T= 20C, in cross flow over 10 mm square tube at 45 degrees, maintained at 50C. Sketch Assumptions Calculate the air properties (show the interpolation steps) Re = ? Nu = ? (reference the table number where the equation is obtained) H = ? Calculate the rate of heat transfer per unit length, q.
A jet of water 50 mm in diameter with a velocity of 20 m/s strikes a...
A jet of water 50 mm in diameter with a velocity of 20 m/s strikes a flat plate inclined at an angle of 30° to the axis of the jet. Determine (i) the normal force exerted on the plate when the plate is stationary (ii) the normal force exerted on the plate when the plate is moving at 5 m/s in the direction of the jet (iii) the work-done on the plate and the efficiency for case (ii).
A stone is thrown vertically upward with an initial velocity of 20 m/s. Air resistance is...
A stone is thrown vertically upward with an initial velocity of 20 m/s. Air resistance is considered negligible. (1) At what time does it reach the peak? (2) What is the maximum height it reaches? (3) What is speed of the stone just before it hits the ground? The velocity of a 1-kg particle moving along the x axis changes from vi = -2m/s to vf = -5m/s in 3s. (1) What are the change in momentum and impulse for...
Sounds waves are disturbances in air molecules that move at 343 m/s. Pitch is a measure...
Sounds waves are disturbances in air molecules that move at 343 m/s. Pitch is a measure of a sounds frequency. A middle C note in music has a frequency (pitch) of 261.6 Hz. a. If you are listening to a middle C, how many pulses (wave crests) of sound hit you in one minute (1 minute is exactly 60 seconds)? b. How far apart is each wave crest (wavelength) in a middle C note? c. If that note was sung...
A normal shock moves at a constant velocity of 500 m/s into still air (100 kPa,...
A normal shock moves at a constant velocity of 500 m/s into still air (100 kPa, 0◦C). Determine the static and stagnation conditions present in the air after the passage of the wave, as well as the gas velocity behind the wave. Hint: consider an observer moving with the wave.
An air–fuel mixture enters a constant area combustion chamber at a velocity of 100 m/s a...
An air–fuel mixture enters a constant area combustion chamber at a velocity of 100 m/s a pressure of 70 kPa and a temperature of 150°C. Assuming that the fuel–air ratio is 0.04, the heating value of the fuel is 30 MJ/kg, and the mixture has the properties of air, calculate the Mach number in the gas flow after combustion is completed and the change of stagnation temperature and stagnation pressure across the combustion chamber. Neglect the effects of viscosity and...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT