Question

In: Physics

A stone is thrown vertically upward with an initial velocity of 20 m/s. Air resistance is...

A stone is thrown vertically upward with an initial velocity of 20 m/s. Air resistance is considered negligible. (1) At what time does it reach the peak? (2) What is the maximum height it reaches? (3) What is speed of the stone just before it hits the ground?

The velocity of a 1-kg particle moving along the x axis changes from vi = -2m/s to vf = -5m/s in 3s. (1) What are the change in momentum and impulse for vi = –2m/s and vf = –5m/s? (2) What is the average force acting in the 3s duration

At time t = 0s a 2-kg particle has a velocity of (4 m/s) � – (3 m/s) �. At t = 3 s its velocity is (2 m/s) � + (3 m/s) �. (1) What is the average force acting during the time interval between t=0s and t=3s? (2) What is the change of the kinetic energy of the particle in the same time interval? (3) What is the average power in the same time interval?

Solutions

Expert Solution



Related Solutions

1. A stone is thrown upward from a tower with initial velocity of 3 m/s. Height...
1. A stone is thrown upward from a tower with initial velocity of 3 m/s. Height of tower is 50 m above the ground. What would be its position after 3.4 secs? What would be its speed after 3.4 secs? What would its velocity be when it hits the ground? 2. Duterte throws a ball upward at 15 m/s while standing on the edge of a building so that the ball can fall to the base of the building 50...
A stone is thrown vertically upward at a speed of 48.00 m/s at time t=0. A...
A stone is thrown vertically upward at a speed of 48.00 m/s at time t=0. A second stone is thrown upward with the same speed 4.050 seconds later. At what time are the two stones at the same height? Set up an equation of motion for each stone. Write the time for the second stone in terms of the time for the first stone. Solve the two equations for the unknown time.
An object is thrown vertically upward with an initial velocity of 10 m/sec from a height...
An object is thrown vertically upward with an initial velocity of 10 m/sec from a height of 3 meters. In meters, find the highest point it reaches. (Round your answer to three decimal places, in m) Find when it hits the ground. (Enter your answer in seconds. Round your answer to three decimal places in seconds)
A stone is thrown with an initial velocity of 35.0 m/s at an angle of 37...
A stone is thrown with an initial velocity of 35.0 m/s at an angle of 37 degrees above the horizontal. Find: (a) its horizontal and vertical displacement after 0.55 s; (b) its velocity after 0.55 s (both magnitude and direction). (c) its maximum height and range.
An object of 10 kg mass is thrown vertically upward with a velocity of 8 m/s....
An object of 10 kg mass is thrown vertically upward with a velocity of 8 m/s. Calculate the potential energy at the maximum height.
A 0.300 kg ball is thrown vertically upward with an initial speed of 10.0 m/s. The...
A 0.300 kg ball is thrown vertically upward with an initial speed of 10.0 m/s. The initial potential energy is taken as zero (y1 = 0). (a) Find the ball’s speed at 2.50 m above the initial position. (b) Find the maximum height of the ball.
A 1.5 kg ball is thrown vertically upward with an initial speed of 15 m/s. If...
A 1.5 kg ball is thrown vertically upward with an initial speed of 15 m/s. If the initial potential energy is taken as zero, find the ball’s kinetic, potential, and mechanical energies (a) at its initial position, (b) at 5 m above the initial position, and (c) at its maximum height.
A ball is thrown upward with initial velocity v0 = 15.0 m/s at an angle of...
A ball is thrown upward with initial velocity v0 = 15.0 m/s at an angle of 30° with the horizontal. The thrower stands near the top of a Jong hill which slopes downward at an angle of 20°. Determine how far down the slope the ball strikes.
A projectile of mass m = 5kg is thrown upward vertically with a velocity v0 =...
A projectile of mass m = 5kg is thrown upward vertically with a velocity v0 = 9 m/s a) Starting with Newton's 2nd Law FNet = ma, calculate the time to an accuracy of four decimal places at which the maximum height is reached when no air resistance is present. b) Starting with Newton's 2nd Law FNet = ma, calculate the time to an accuracy of four decimal places at which the maximum height is reached when considering the following...
A ball is thrown vertically upward from a height of 5 ft with an initial velocity...
A ball is thrown vertically upward from a height of 5 ft with an initial velocity of 40 feet per second. Note that the acceleration of the ball is given by a(t) = −32 m/s2. How high will the ball go? When does the ball hit the ground? What is the velocity of the ball when it hits the ground?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT