Question

In: Advanced Math

Solve x′=x−8y, y′=x−3y, x(0)=2, y(0)=1

Solve x′=x−8y, y′=x−3y, x(0)=2, y(0)=1

Solutions

Expert Solution


Related Solutions

1) x2y'' - 8xy' - 8y =0 2) y''- 3y' - 2y = 10sin(x)
1) x2y'' - 8xy' - 8y =0 2) y''- 3y' - 2y = 10sin(x)
Solve the differential equation 1. a) 2xy"+ y' + y = 0 b) (x-1)y'' + 3y...
Solve the differential equation 1. a) 2xy"+ y' + y = 0 b) (x-1)y'' + 3y = 0
solve this equation y''-6y'+8y=1 when y(0)=1, y'(0)=7
solve this equation y''-6y'+8y=1 when y(0)=1, y'(0)=7
solve y' +(x+2/x)y =(e^x)/x^2 ; y(1)=0
solve y' +(x+2/x)y =(e^x)/x^2 ; y(1)=0
Solve the ordinary differential equation analytically: y''-4y-+3y = 5cos(x) + e^(2x) y(0)=1, y'(0)=0
Solve the ordinary differential equation analytically: y''-4y-+3y = 5cos(x) + e^(2x) y(0)=1, y'(0)=0
Solve the equation y'=5-8y with initial condition y'(0)=0
Solve the equation y'=5-8y with initial condition y'(0)=0
Solve each of the following IVP’s: y'' - y' - 3y = 0, y(0) = 0,...
Solve each of the following IVP’s: y'' - y' - 3y = 0, y(0) = 0, y'(0) = -1   y'' + 4y' + 2y = 0, y(0) = 1, y'(0) = 0   y'' + 11y' + 30y = 0, y(0) = -2, y'(0) = 0 y'' + 3y' = 0, y(0) = 1, y'(0) = 0   y'' - 16y = 0, y(0) = 1, y'(0) = 2
Solve the ODE y"+3y'+2y=(cosx)+(x^2)+(e^-1)
Solve the ODE y"+3y'+2y=(cosx)+(x^2)+(e^-1)
Question : y'''+4y' =0 , y'''-2y''+4y'-8y=0 , y'''-3y''+3y'-y=0 , y^4 -4y'''+6y''-4y+y=0 , y^4+6y''+9y=0 , y^6+y'''=0
Question : y'''+4y' =0 , y'''-2y''+4y'-8y=0 , y'''-3y''+3y'-y=0 , y^4 -4y'''+6y''-4y+y=0 , y^4+6y''+9y=0 , y^6+y'''=0
Use the Laplace transform to solve the given initial value problem: y''+3y'+2y=1 y(0)=0, y'(0)=2
Use the Laplace transform to solve the given initial value problem: y''+3y'+2y=1 y(0)=0, y'(0)=2
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT