In: Statistics and Probability
BMI | Testosterone |
21.4 | 0.78 |
19.0 | 0.70 |
18.3 | 0.63 |
19.5 | 0.60 |
20.9 | 0.60 |
23.4 | 0.69 |
25.0 | 0.76 |
24.1 | 0.58 |
24.2 | 0.50 |
22.6 | 0.48 |
20.4 | 0.49 |
16.2 | 0.43 |
17.8 | 0.42 |
21.0 | 0.38 |
18.6 | 0.35 |
20.9 | 0.35 |
22.4 | 0.32 |
23.5 | 0.31 |
18.8 | 0.28 |
19.3 | 0.25 |
19.5 | 0.23 |
20.2 | 0.24 |
21.2 | 0.24 |
21.3 | 0.26 |
22.2 | 0.27 |
28.3 | 0.30 |
27.7 | 0.24 |
28.1 | 0.19 |
29.2 | 0.17 |
33.3 | 0.18 |
33.2 | 0.23 |
34.7 | 0.24 |
35.8 | 0.06 |
37.0 | 0.15 |
37.0 | 0.17 |
39.0 | 0.18 |
41.6 | 0.17 |
42.4 | 0.15 |
47.7 | 0.12 |
45.7 | 0.25 |
41.5 | 0.25 |
38.0 | 0.25 |
38.1 | 0.32 |
37.8 | 0.35 |
34.9 | 0.37 |
34.8 | 0.39 |
34.7 | 0.46 |
32.0 | 0.49 |
31.9 | 0.42 |
30.5 | 0.36 |
Hey I have used Excel of solving this as it is better to equipped to handle regression.
Null hypothesis-Ho: Β1 = 0(slope coefficient is zero i.e there exists no linear relationship between testosterone and BMI)
Alternative hypothesis-Ha: Β1 ≠ 0(There exists a linear relationship and slope is not zero)
This your data and residuals and predicted values-
BMI | Testosterone | Predicted BMI | Residuals |
21.4 | 0.78 | 17.67425114 | 3.725748865 |
19 | 0.7 | 19.66635373 | -0.666353727 |
18.3 | 0.63 | 21.40944349 | -3.109443495 |
19.5 | 0.6 | 22.15648197 | -2.656481966 |
20.9 | 0.6 | 22.15648197 | -1.256481966 |
23.4 | 0.69 | 19.91536655 | 3.484633449 |
25 | 0.76 | 18.17227678 | 6.827723217 |
24.1 | 0.58 | 22.65450761 | 1.445492386 |
24.2 | 0.5 | 24.64661021 | -0.446610206 |
22.6 | 0.48 | 25.14463585 | -2.544635854 |
20.4 | 0.49 | 24.89562303 | -4.49562303 |
16.2 | 0.43 | 26.38969997 | -10.18969997 |
17.8 | 0.42 | 26.6387128 | -8.838712797 |
21 | 0.38 | 27.63476409 | -6.634764093 |
18.6 | 0.35 | 28.38180256 | -9.781802565 |
20.9 | 0.35 | 28.38180256 | -7.481802565 |
22.4 | 0.32 | 29.12884104 | -6.728841037 |
23.5 | 0.31 | 29.37785386 | -5.877853861 |
18.8 | 0.28 | 30.12489233 | -11.32489233 |
19.3 | 0.25 | 30.8719308 | -11.5719308 |
19.5 | 0.23 | 31.36995645 | -11.86995645 |
20.2 | 0.24 | 31.12094363 | -10.92094363 |
21.2 | 0.24 | 31.12094363 | -9.920943628 |
21.3 | 0.26 | 30.62291798 | -9.32291798 |
22.2 | 0.27 | 30.37390516 | -8.173905156 |
28.3 | 0.3 | 29.62686668 | -1.326866684 |
27.7 | 0.24 | 31.12094363 | -3.420943628 |
28.1 | 0.19 | 32.36600775 | -4.266007748 |
29.2 | 0.17 | 32.8640334 | -3.664033396 |
33.3 | 0.18 | 32.61502057 | 0.684979428 |
33.2 | 0.23 | 31.36995645 | 1.830043548 |
34.7 | 0.24 | 31.12094363 | 3.579056372 |
35.8 | 0.06 | 35.60317446 | 0.196825541 |
37 | 0.15 | 33.36205904 | 3.637940956 |
37 | 0.17 | 32.8640334 | 4.135966604 |
39 | 0.18 | 32.61502057 | 6.384979428 |
41.6 | 0.17 | 32.8640334 | 8.735966604 |
42.4 | 0.15 | 33.36205904 | 9.037940956 |
47.7 | 0.12 | 34.10909752 | 13.59090248 |
45.7 | 0.25 | 30.8719308 | 14.8280692 |
41.5 | 0.25 | 30.8719308 | 10.6280692 |
38 | 0.25 | 30.8719308 | 7.128069196 |
38.1 | 0.32 | 29.12884104 | 8.971158963 |
37.8 | 0.35 | 28.38180256 | 9.418197435 |
34.9 | 0.37 | 27.88377692 | 7.016223083 |
34.8 | 0.39 | 27.38575127 | 7.414248731 |
34.7 | 0.46 | 25.6426615 | 9.057338499 |
32 | 0.49 | 24.89562303 | 7.10437697 |
31.9 | 0.42 | 26.6387128 | 5.261287203 |
30.5 | 0.36 | 28.13278974 | 2.367210259 |
This is your residual plot: observations seems evenly distributed above and below the center line i.e they are random not showing any specific pattern.So data adheres to the assumptions of normality.
this is your scatter plot in which we have our line of best fit
green dots are actual values and blue dots are predicted values that's why there form a downward sloping line.
Coefficients | Standard Error | t Stat | P-value | |
Intercept | 37.0972514 | 2.38212866 | 15.5731519 | 2.14E-20 |
Testosterone(this is our slope coefficient) | -24.9012824 | 6.073223821 | -4.10017532 | 0.00015855 |
T value is -4.100 ignoring the sign we get 4.100
Degrees of freedom are n-2=50-2=48
Test statistic. The test statistic is a t statistic (t) defined by the following equation.
t = b1 / SE
see p-value (0.000158) is much smaller than 0.05 and even 0.01 so we reject the null hypothesis. and coclude that there exists a linear relation between BMI and testosterone hence slope is not 0.
NOTE- after having your raw data you can go to data analysis tab in excel and then select regression proceed as instructed there and you can get the results in one click.
Regression Statistics | |
Multiple R | 0.50930343 |
R Square | 0.25938998 |
Adjusted R Square | 0.24396061 |
Standard Error | 7.43120421 |
Observations | 50 |
Please upvote if I am able to help you
Thanks.