In: Statistics and Probability
b. Find area between Z= 0 and Z= 1.31
c. Find probability of P( -1.96≤ z ≤ 1.96) and P (Z=0)
112 |
120 |
98 |
55 |
71 |
35 |
99 |
124 |
64 |
150 |
150 |
55 |
100 |
132 |
20 |
70 |
93 |
a) P(X≤x) = 0.025
Z value at 0.025 =
-1.9600 (excel formula =NORMSINV(
0.025 ) )
b)
P ( 0.000 < Z <
1.310 )
= P ( Z < 1.310 ) - P ( Z
< 0.00 ) =
0.9049 - 0.5000 =
0.4049 (answer)
c)
P ( -1.960 < Z <
1.960 )
= P ( Z < 1.960 ) - P ( Z
< -1.96 ) =
0.9750 - 0.0250 =
0.9500 (answer)
d) P(z=0) = 0.00
==============
2)
Z value at 0.98 =
2.0537 (excel formula =NORMSINV(
0.98 ) )
z=(x-µ)/σ
so, X=zσ+µ= 2.054 *
5 + 72
X = 82.27 (answer)
marks must you exceed to get a distinction ≥ 82.27
=============
P(X≤x) = 0.93
Z value at 0.93 =
1.4758 (excel formula =NORMSINV(
0.93 ) )
z=(x-µ)/σ
so, X=zσ+µ= 1.476 *
5 + 72
X = 79.38 (answer)
range of marks is required for the entrepreneurial opportunity= (79.38 , 82.27 )
=============
b) average must you get in order to avoid failing >79.38
=================
3)
a)
sample std dev , s = √(Σ(X- x̅ )²/(n-1) )
= 38.3658
Sample Size , n = 17
Sample Mean, x̅ = ΣX/n =
91.0588
Level of Significance , α =
0.01
degree of freedom= DF=n-1= 16
't value=' tα/2= 2.92 [Excel
formula =t.inv(α/2,df) ]
Standard Error , SE = s/√n = 38.3658 /
√ 17 = 9.3051
margin of error , E=t*SE = 2.9208
* 9.3051 = 27.1781
confidence interval is
Interval Lower Limit = x̅ - E = 91.06
- 27.178080 = 63.8807
Interval Upper Limit = x̅ + E = 91.06
- 27.178080 = 118.2369
99% confidence interval is (
63.88 < µ < 118.24
)
-------------------
Level of Significance , α =
0.05
degree of freedom= DF=n-1= 16
't value=' tα/2= 2.12 [Excel
formula =t.inv(α/2,df) ]
Standard Error , SE = s/√n = 38.3658 /
√ 17 = 9.3051
margin of error , E=t*SE = 2.1199
* 9.3051 = 19.7259
confidence interval is
Interval Lower Limit = x̅ - E = 91.06
- 19.725869 = 71.3330
Interval Upper Limit = x̅ + E = 91.06
- 19.725869 = 110.7847
95% confidence interval is (
71.33 < µ < 110.78
)
b) 99% interval is wider