Question

In: Statistics and Probability

a. Find the z value to the left of mean so that 0.025 percent of the...

  1. a. Find the z value to the left of mean so that 0.025 percent of the area under the distribution curve lies to the left of it. Also report the area that was left over after the last calculation.

b. Find area between Z= 0 and Z= 1.31

           c. Find probability of P( -1.96≤ z ≤ 1.96) and P (Z=0)                  

  1. The average score of a Business Studies graduate is 72 and the standard deviation is 5. The top 2 percent of the graduates receive a certificate of distinction and the next 5 percent are given a chance to apply to the business incubation center for an entrepreneurial venture.
  1. What score/marks must you exceed to get a distinction and what range of marks is required for the entrepreneurial opportunity.
  2. What average must you get in order to avoid failing.                  

  1. The tax rates for basic necessities to be used during the COVID-19 by households items in cents is as follows:

112

120

98

55

71

35

99

124

64

150

150

55

100

132

20

70

93

  1. Find the 99% and 95% confidence interval for the food tax on the selected items.
  2. Which interval is larger and why?
  3. If you wanted to convey the true picture of the majority of the people to the government which confidence interval would you report? Give a logical explanation.                                                                                                       

Solutions

Expert Solution

a) P(X≤x) =   0.025                  
                      
Z value at    0.025   =   -1.9600   (excel formula =NORMSINV(   0.025   ) )

b)     
                                      
P (    0.000   < Z <    1.310   )                       
= P ( Z <    1.310   ) - P ( Z <   0.00   ) =    0.9049   -    0.5000   =    0.4049   (answer)

c)

P (    -1.960   < Z <    1.960   )                       
= P ( Z <    1.960   ) - P ( Z <   -1.96   ) =    0.9750   -    0.0250   =    0.9500   (answer)

d) P(z=0) = 0.00

==============

2)

Z value at    0.98   =   2.0537   (excel formula =NORMSINV(   0.98   ) )
z=(x-µ)/σ                      
so, X=zσ+µ=   2.054   *   5   +   72  
X   =   82.27   (answer)          
marks must you exceed to get a distinction ≥ 82.27

=============

P(X≤x) =   0.93                  
                      
Z value at    0.93   =   1.4758   (excel formula =NORMSINV(   0.93   ) )
z=(x-µ)/σ                      
so, X=zσ+µ=   1.476   *   5   +   72  
X   =   79.38   (answer)      

range of marks is required for the entrepreneurial opportunity= (79.38 , 82.27 )  

=============

b) average must you get in order to avoid failing >79.38

=================

3)

a)

sample std dev ,    s = √(Σ(X- x̅ )²/(n-1) ) =   38.3658
Sample Size ,   n =    17
Sample Mean,    x̅ = ΣX/n =    91.0588

Level of Significance ,    α =    0.01          
degree of freedom=   DF=n-1=   16          
't value='   tα/2=   2.92   [Excel formula =t.inv(α/2,df) ]      
                  
Standard Error , SE = s/√n =   38.3658   / √   17   =   9.3051
margin of error , E=t*SE =   2.9208   *   9.3051   =   27.1781
                  
confidence interval is                   
Interval Lower Limit = x̅ - E =    91.06   -   27.178080   =   63.8807
Interval Upper Limit = x̅ + E =    91.06   -   27.178080   =   118.2369
99%   confidence interval is (   63.88   < µ <   118.24   )
-------------------

Level of Significance ,    α =    0.05          
degree of freedom=   DF=n-1=   16          
't value='   tα/2=   2.12   [Excel formula =t.inv(α/2,df) ]      
                  
Standard Error , SE = s/√n =   38.3658   / √   17   =   9.3051
margin of error , E=t*SE =   2.1199   *   9.3051   =   19.7259
                  
confidence interval is                   
Interval Lower Limit = x̅ - E =    91.06   -   19.725869   =   71.3330
Interval Upper Limit = x̅ + E =    91.06   -   19.725869   =   110.7847
95%   confidence interval is (   71.33   < µ <   110.78   )

b) 99% interval is wider


Related Solutions

Find the percent of the area to the left of z = −2.35.
Find the percent of the area to the left of z = −2.35.
Find the value of z such that 0.03 of the area lies to the left of...
Find the value of z such that 0.03 of the area lies to the left of z. Round your answer to two decimal places.
1. Determine the critical value of Z for a left tailed test regarding a population mean...
1. Determine the critical value of Z for a left tailed test regarding a population mean at the alpha ?= .05 level of significance. 2. Determine the critical value of t for a? two-tailed test of a population mean at the alpha ?= .05 level of significance based on a sample size of n? = 14? (13 d.f.). 3. Determine if the following statement is true or false. When testing a hypothesis using the? P-value Approach, if the? P-value is?...
Find z such that 85% of the standard normal curve lies to the left of z....
Find z such that 85% of the standard normal curve lies to the left of z. (Round your answer to two decimal places.) z =
N= 72 stdev =8.333 Mean 42 Null hypo= 42 Alternative >42 Z-value 1.96 p-value 0.025 1,Describe...
N= 72 stdev =8.333 Mean 42 Null hypo= 42 Alternative >42 Z-value 1.96 p-value 0.025 1,Describe whether or not you actually reject H0 with details. 2, Description of what was actually decided in the context of the original problem. such as, if the problem is about mean airfares between two cities, simply saying reject Ho is not good enough; describe what this decision means as it applies to mean airfares. 3, Any statistical decision method is subject to Type I...
For the left sided test, find the critical value from Z-table when alpha=0.10
For the left sided test, find the critical value from Z-table when alpha=0.10
Find the​ t-value such that the area in the right tail is 0.025 with 9 degrees...
Find the​ t-value such that the area in the right tail is 0.025 with 9 degrees of freedom. nothing ​(Round to three decimal places as​ needed.) ​(b) Find the​ t-value such that the area in the right tail is 0.25 with 29 degrees of freedom. nothing ​(Round to three decimal places as​ needed.) ​(c) Find the​ t-value such that the area left of the​ t-value is 0.15 with 7 degrees of freedom.​ [Hint: Use​ symmetry.] nothing ​(Round to three decimal...
Find the z-score for which the area to the left is 0.20.
Find the z-score for which the area to the left is 0.20.
Find the area under the standard normal curve to the left of z=−2.27 z = −...
Find the area under the standard normal curve to the left of z=−2.27 z = − 2.27 . Round your answer to four decimal places, if necessary.
Find the value of z so that the area under the standard normal curve from 0...
Find the value of z so that the area under the standard normal curve from 0 to z is 0.4904 and z is negative.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT