Question

In: Physics

A block of mass M is hanging from a rope of length L. You throw a...

A block of mass M is hanging from a rope of length L. You throw a ball of clay of mass m towards the block. The clay hits the block along the horizontal axis with a speed v, and proceeds to stick to the block. The block and clay swing up to a maximum height h. Find h.

Solutions

Expert Solution


Related Solutions

A rope of length L = 5.3 m with a total mass of m = 0.298...
A rope of length L = 5.3 m with a total mass of m = 0.298 kg is tied to a hook rigidly mounted into a wall. A pulse of height 1.4 cm is sent down the rope. The tension in the rope is F = 27 N. (A) Find the time between sending the pulse down the rope and detecting the pulse that returns. (B) What is the height of the pulse that returns?
A uniform stick, mass m and length l, is placed in a horizontal plane by hanging...
A uniform stick, mass m and length l, is placed in a horizontal plane by hanging it from a massless string attached to the center. A ball of mass M moving with speed V in the plane of the stick. The ball strikes the stick at a distance d from the center. the collision is elastic. Find the resulting translational and rotational speeds of the stick and the resulting speed of the ball. show that the relative speed of the...
A rod of mass "10m" and length "L" is hanging through a pivot at one end....
A rod of mass "10m" and length "L" is hanging through a pivot at one end. A lump of clay of mass "m" is thrown perpendicular to the rod hitting it at the opposite end of the pivot. The lump sticks to the rod causing the rod to swing in a vertical circle up to an angle of 90o. Given [m, L] Determine: a. The initial speed of the lump of clay. b. The angular speed of the system just...
A metal block of mass 1.830 kg is hanging from a string. The tension in the...
A metal block of mass 1.830 kg is hanging from a string. The tension in the string is 1.089×101 N. The block is submerged in a beaker of fluid and is stationary. What is the magnitude and direction of the buoyant force acting on the block?
Calculate uK Run # Experimental Condition Total Block Mass (M) Total Hanging Mass (m) Measured Acceleration...
Calculate uK Run # Experimental Condition Total Block Mass (M) Total Hanging Mass (m) Measured Acceleration (“slope value”) Calculated µk Wooden Surface 1 Initial Block Mass Initial Hanging Mass 0.324 kg 0.1 kg 0.22 m/s2 2 Initial Block Mass Doubled Hanging Mass 0.324 kg 0.2 kg 1.5 m/s2 3 Doubled Block Mass Doubled Hanging Mass 0.648 kg 0.2 kg 0.19 m/s2 Felt Surface 4 Initial Block Mass Initial Hanging Mass 0.324 kg 0.1 kg 0.26 m/s2 5 Initial Block Mass...
Needing a solution to this question. 5) A rope of mass m and length ℓ hangs...
Needing a solution to this question. 5) A rope of mass m and length ℓ hangs from a ceiling. Show that the wave speed on the rope a distance y above the lower end is v= Square root of gy (10). Would such a hanging rope support a “wave”, as per our definition in Q1? Explain in words? ******NOTE this is question one (Q1). It has been solved already. Just for reference. Thanks Q1) A good definition of a “wave”...
A pendulum of length l with a ball of mass m is raised 90◦ clockwise from...
A pendulum of length l with a ball of mass m is raised 90◦ clockwise from its hanging position and released. A block of mass 2m rests on a frictionless surface at the pendulum’s hanging position so that it is struck just as the pendulum reaches its lowest point. The two objects collide elastically and the pendulum rebounds, swinging back up to an angle θ clockwise from the vertical. What is the angle θ, and what is the speed of...
Consider a simple plane pendulum of mass m and length l (the mass swings in a...
Consider a simple plane pendulum of mass m and length l (the mass swings in a vertical plane). After the pendulum is set into motion, the length of the string is decreased at a constant rate, ??/?? = −? = ?????. The suspension point remains fixed. (a) Compute the Lagrangian and Hamiltonian for the system. [4] (b) Compare the Hamiltonian and the total energy- is the energy conserved? Why/Why not? [2]
A ball of mass m is attached to a string of length L. It is swung...
A ball of mass m is attached to a string of length L. It is swung in a vertical circle with enough speed to keep the string taut throughout the motion. Assume the ball travels freely in the circle with negligible loss of mechanical energy. Determine if the following six statements are true or false; e.g., enter TTFFFF. The tension in the string is less at the top of the circle than at the bottom of the circle. The acceleration...
A ladder of length L = 2.3 m and mass m = 14 kg rests on...
A ladder of length L = 2.3 m and mass m = 14 kg rests on a floor with coefficient of static friction μs = 0.54. Assume the wall is frictionless. A person with mass M = 69 kg now stands at the very top of the ladder. What is the normal force the floor exerts on the ladder? What is the minimum angle to keep the ladder from sliding?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT