In: Advanced Math
List examples of equations similar to the Pell's equation, ie. any Diophantine equation other then Pell's.
a)
Linear Combination
A Diophantine equation in the form is known as a linear combination. If two relatively prime integers and are written in this form with , the equation will have an infinite number of solutions. More generally, there will always be an infinite number of solutions when . If , then there are no solutions to the equation. To see why, consider the equation . is a divisor of the LHS (also notice that must always be an integer). However, will never be a multiple of , hence, no solutions exist.
Now consider the case where . Thus, . If and are relatively prime, then all solutions are obviously in the form for all integers . If they are not, we simply divide them by their greatest common divisor.
Pythagorean Triples
Main article: Pythagorean triple
A Pythagorean triple is a set of three integers that satisfy the Pythagorean Theorem, . There are three main methods of finding Pythagorean triples:
Method of Pythagoras
If is an odd number, then is a Pythagorean triple.
Method of Plato
If , is a Pythagorean triple.
Babylonian Method
For any , is a Pythagorean triple.
Sum of Fourth Powers
A equation of form has no integer solutions, as follows: We assume that the equation does have integer solutions, and consider the solution which minimizes . Let this solution be . If then their GCD must satsify . The solution would then be a solution less than , which contradicts our assumption. Thus, this equation has no integer solutions.
If , we then proceed with casework, in .
Note that every square, and therefore every fourth power, is either or . The proof of this is fairly simple, and you can show it yourself.
Case 1:
This would imply , a contradiction.
Case 2:
This would imply , a contradiction since we assumed .
Case 3: , and
We also know that squares are either or . Thus, all fourth powers are either or .
By similar approach, we show that:
, so .
This is a contradiction, as implies is odd, and implies is even. QED