Question

In: Statistics and Probability

Let X1…X5 be iid random sample of size n=5 from a Uniform distribution with parameters 0,theta....

Let X1…X5 be iid random sample of size n=5 from a Uniform distribution with parameters 0,theta. We test H0: theta=1 versus H1: theta=2. Reject H0 when max(X1…X5)>b.

  1. Find the value of b so that the size of the test is 0.10, then find the power of this test.
  2. Among the tests based on max(X1…Xn), find the most powerful test with size exactly equal to 0.

Solutions

Expert Solution

For this question you need concepts of hypothesis testing.

Neyman - Pearson Lemma to obtain most powerful test. Also you must know how to obtain likelihood in case of order statistics.

I have solved the question with proper steps.


Related Solutions

Let X1,X2,...Xn be a random sample of size n form a uniform distribution on the interval...
Let X1,X2,...Xn be a random sample of size n form a uniform distribution on the interval [θ1,θ2]. Let Y = min (X1,X2,...,Xn). (a) Find the density function for Y. (Hint: find the cdf and then differentiate.) (b) Compute the expectation of Y. (c) Suppose θ1= 0. Use part (b) to give an unbiased estimator for θ2.
Let X1, X2, . . . be iid random variables following a uniform distribution on the...
Let X1, X2, . . . be iid random variables following a uniform distribution on the interval [0, θ]. Show that max(X1, . . . , Xn) → θ in probability as n → ∞
Let X1,…, Xn be a sample of iid N(0, ?) random variables with Θ=(0, ∞). Determine...
Let X1,…, Xn be a sample of iid N(0, ?) random variables with Θ=(0, ∞). Determine a) the MLE ? of ?. b) E(? ̂). c) the asymptotic variance of the MLE of ?. d) the MLE of SD(Xi ) = √ ?.
Let X1, . . . , Xn be a random sample from a uniform distribution on...
Let X1, . . . , Xn be a random sample from a uniform distribution on the interval [a, b] (i) Find the moments estimators of a and b. (ii) Find the MLEs of a and b.
Let X1,X2,...,Xn be a random sample from a uniform distribution on the interval (0,a). Recall that...
Let X1,X2,...,Xn be a random sample from a uniform distribution on the interval (0,a). Recall that the maximum likelihood estimator (MLE) of a is ˆ a = max(Xi). a) Let Y = max(Xi). Use the fact that Y ≤ y if and only if each Xi ≤ y to derive the cumulative distribution function of Y. b) Find the probability density function of Y from cdf. c) Use the obtained pdf to show that MLE for a (ˆ a =...
Let X1,X2, . . . , Xn be a random sample from the uniform distribution with...
Let X1,X2, . . . , Xn be a random sample from the uniform distribution with pdf f(x; θ1, θ2) = 1/(2θ2), θ1 − θ2 < x < θ1 + θ2, where −∞ < θ1 < ∞ and θ2 > 0, and the pdf is equal to zero elsewhere. (a) Show that Y1 = min(Xi) and Yn = max(Xi), the joint sufficient statistics for θ1 and θ2, are complete. (b) Find the MVUEs of θ1 and θ2.
Let X be a single observation from a Uniform distribution with parameters 0,theta. We test H0:...
Let X be a single observation from a Uniform distribution with parameters 0,theta. We test H0: theta =1 versus H1: theta = 2. If X is greater than or equal to b, reject H0. Find the value of b so that the size of the test is 0.10, then find the power of this test. Also, is there a most powerful test of size exactly equal to 0?
Let X1, … , Xn. be a random sample from gamma (2, theta) distribution. a) Show...
Let X1, … , Xn. be a random sample from gamma (2, theta) distribution. a) Show that it is the regular case of the exponential class of distributions. b) Find a complete, sufficient statistic for theta. c) Find the unique MVUE of theta. Justify each step.
Let X1, X2, . . . , Xn be a random sample of size n from...
Let X1, X2, . . . , Xn be a random sample of size n from a Poisson distribution with unknown mean µ. It is desired to test the following hypotheses H0 : µ = µ0         versus     H1 : µ not equal to µ0 where µ0 > 0 is a given constant. Derive the likelihood ratio test statistic
2. Let X1, ..., Xn be a random sample from a uniform distribution on the interval...
2. Let X1, ..., Xn be a random sample from a uniform distribution on the interval (0, θ) where θ > 0 is a parameter. The prior distribution of the parameter has the pdf f(t) = βαβ/t^(β−1) for α < t < ∞ and zero elsewhere, where α > 0, β > 0. Find the Bayes estimator for θ. Describe the usefulness and the importance of Bayesian estimation. We are assuming that theta = t, but we are unsure if...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT