In: Statistics and Probability
Consider the following gasoline sales time series. If needed, round your answers to two-decimal digits.
| Week | Sales (1,000s of gallons) |
| 1 | 16 |
| 2 | 22 |
| 3 | 17 |
| 4 | 23 |
| 5 | 15 |
| 6 | 17 |
| 7 | 21 |
| 8 | 19 |
| 9 | 20 |
| 10 | 18 |
| 11 | 15 |
| 12 | 23 |
| (a) | Show the exponential smoothing forecasts using α = 0.1, and α = 0.2. | |||||||||
|
||||||||||
| (b) | Applying the MSE measure of forecast accuracy, would you prefer a smoothing constant of α = 0.1 or α = 0.2 for the gasoline sales time series? | |||||||||
| An - Select your answer -α = 0.1α = 0.2Item 3 smoothing constant provides the more accurate forecast, with an overall MSE of . | ||||||||||
| (c) | Are the results the same if you apply MAE as the measure of accuracy? | |||||||||
| An - Select your answer -α = 0.1α = 0.2Item 5 smoothing constant provides the more accurate forecast, with an overall MAE of . | ||||||||||
| (d) | What are the results if MAPE is used? | |||||||||
| An - Select your answer -α = 0.1α = 0.2Item 7 smoothing constant provides the more accurate forecast, with an overall MAPE of . | ||||||||||
| for exponential smoothing: next period forecast =α*last period actual+(1-α)*last period forecast |
for α =0.1
| period | value | forecast | error | error^2 | |A-F|/A |
| 1 | 16 | ||||
| 2 | 22 | 16.00 | 6.000 | 36.000 | 0.2727 |
| 3 | 17 | 16.60 | 0.400 | 0.160 | 0.0235 |
| 4 | 23 | 16.64 | 6.360 | 40.450 | 0.2765 |
| 5 | 15 | 17.28 | 2.276 | 5.180 | 0.1517 |
| 6 | 17 | 17.05 | 0.048 | 0.002 | 0.0028 |
| 7 | 21 | 17.04 | 3.956 | 15.653 | 0.1884 |
| 8 | 19 | 17.44 | 1.561 | 2.436 | 0.0821 |
| 9 | 20 | 17.60 | 2.405 | 5.783 | 0.1202 |
| 10 | 18 | 17.84 | 0.164 | 0.027 | 0.0091 |
| 11 | 15 | 17.85 | 2.852 | 8.135 | 0.1901 |
| 12 | 23 | 17.57 | 5.433 | 29.518 | 0.2362 |
| 13 | 18.11 | ||||
| average | 2.86 | 13.031 | 14.12% | ||
| MAE | MSE | MAPE |
for α =0.2
| period | value | forecast | error | error^2 | |A-F|/A |
| 1 | 16 | ||||
| 2 | 22 | 16.00 | 6.000 | 36.000 | 0.2727 |
| 3 | 17 | 17.20 | 0.200 | 0.040 | 0.0118 |
| 4 | 23 | 17.16 | 5.840 | 34.106 | 0.2539 |
| 5 | 15 | 18.33 | 3.328 | 11.076 | 0.2219 |
| 6 | 17 | 17.66 | 0.662 | 0.439 | 0.0390 |
| 7 | 21 | 17.53 | 3.470 | 12.041 | 0.1652 |
| 8 | 19 | 18.22 | 0.776 | 0.602 | 0.0408 |
| 9 | 20 | 18.38 | 1.621 | 2.627 | 0.0810 |
| 10 | 18 | 18.70 | 0.703 | 0.495 | 0.0391 |
| 11 | 15 | 18.56 | 3.563 | 12.693 | 0.2375 |
| 12 | 23 | 17.85 | 5.150 | 26.521 | 0.2239 |
| 13 | 18.88 | ||||
| average | 2.85 | 12.422 | 14.43% | ||
| MAE | MSE | MAPE |
from above:
a)
| week | alpha=0.1 | alpha=0.2 |
| 13th week | 18.11 | 18.88 |
b)
an α =0.2 ,,,,,,,with an overall MSE of 12.42
c)
an α =0.2 ,,,,,,,with an overall MAE of 2.85
d)
an α =0.1 ,,,,,,,with an overall MAE of 14.12 %